跳到主要內容

簡易檢索 / 詳目顯示

研究生: 彭瑞哲
Jui-Che Peng
論文名稱: 基於平均符元錯誤率分析之混合 AF 與 DF 中繼網路方法
Hybrid Amplify-and-Forward and Decode-and-Forward Relaying Method Based on Average Symbol Error Rate Analysis
指導教授: 張大中
Dah-Chung Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 65
中文關鍵詞: AF中繼器DF中繼器中繼器平均符元錯誤率
外文關鍵詞: Amplify-and-forward, decode-and-forward, relay, average symbol error probability
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用中繼站來擴大無線通訊覆蓋範圍為提升新一代行動網路傳輸效能的重要方法,
    較常見的中繼站傳送機制為放大傳輸 (Amplify-and-Forward, AF) 與解碼傳輸 (Decode-and-Forward,
    DF)。 AF 中繼站因為不需要複雜的編解碼,因此 AF 中繼運算雖具有低複雜度但亦存在雜訊累積的效應,而 DF
    中繼法利用編解碼技術,在某些情況下可提升接收資料的可靠度。本文探討以 AF 與 DF
    的傳輸錯誤機率模型作為選擇混合式中繼站策略的依據,我們分析了 BPSK 與 $M$-QAM 調變方式在此系統的錯誤率,並利用切爾諾夫邊界
    (Chernoff bound) 取上界計算平均錯誤率,以利於中繼站可依此做傳輸策略的決策。


    Using relays is an important technique to expand communication
    coverage in modern mobile communication systems. Amplify-and-Forward
    (AF) and Decode-and-Forward (DF) are the most two popular strategies
    in the relaying methods. AF has low complexity but the noise can be
    amplified while in contrast, DF improves transmission reliability in
    some situations using the coding scheme to suppress the noise.
    In this paper, we explore the symbol error probabilities of the AF
    and DF models for the hybrid AF/DF relaying strategy, in which the
    BPSK and M-QAM modulation types are considered, along with
    calculating the average bit error rate based on the Chernoff upper
    bound.

    Contents 中文摘要 i Abstract ii Contents iii Figure List v Table List vi 1. 序論 1 1.1 前言 1 1.2 章節架構 5 2 Relay 用於 MIMO 傳輸系統之架構 6 2.1 系統架構 6 2.2 AF 和 DF中繼器 7 2.3 AF 與 DF 混合的中繼接收器 9 3 Relay 使用策略之決策法 13 3.1 混合 AF 與 DF 中繼網路策略 13 3.2 AF 中繼器的錯誤機率模型 14 3.3 DF 中繼器的錯誤機率模型 15 3.4 平均錯誤率 22 3.5 忽略直線通道情況 Case1 的錯誤率分析 30 4 系統模擬與結果分析 38 4.1 不同調變的錯誤率比較 39 4.2 不同通道增益的錯誤率比較 45 5 結論 56 附錄 A:AF、DF 錯誤率微分推導 57 參考文獻 62

    [1] B. Rankov and A. Wittneben, “Spectral efficient protocols for half-duplex fading relay channels,” IEEE Journal on Selected Areas in Communications, vol. 25, no. 2, pp. 379–389, 2007.
    [2] Y. Liu, P. Dharmawansa, M. McKay, and K. Letaief, “Finite-snr diversity-multiplexing trade-off of dual hop multiple-relay channels,” IEEE Transactions on Communications, vol. 60, no. 5, pp.1451–1463, 2012.
    [3] X. Jin, J.-S. No, and D.-J. Shin, “Source transmit antenna selection for mimo decode-and-forward relay networks,” IEEE Transactions on Signal Processing, vol. 61, no. 7, pp. 1657–1662, 2013.
    [4] P. Ubaidulla and A. Chockalingam, “Relay precoder optimization in mimo-relay networks with imperfect csi,” IEEE Transactions on Signal Processing, vol. 59, no. 11, pp. 5473–5484, 2011.
    [5] S. Zhang, S. chang Liew, and P. P. Lam, “Physical-layer network coding,” in in ACM Mobicom ‘06, 2006.
    [6] M. Wilson, K. Narayanan, H. Pfister, and A. Sprintson, “Joint physical layer coding and network coding for bidirectional relaying,”IEEE Transactions on Information Theory, vol. 56, no. 11, pp.5641–5654, 2010.
    [7] G. Li, Y. Wang, and P. Zhang, “Linear mmse processing design for 3-phase two-way cooperative mimo relay systems,” IEEE Signal Processing Letters, vol. 19, no. 7, pp. 443–446, 2012.
    [8] R. Wang and M. Tao, “Joint source and relay precoding designs for mimo two-way relaying based on mse criterion,” IEEE Transactions on Signal Processing, vol. 60, no. 3, pp. 1352–1365, 2012.
    [9] E. Chiu and V. Lau, “Cellular multiuser two-way mimo af relaying via signal space alignment: Minimum weighted sinr maximization,”IEEE Transactions on Signal Processing, vol. 60, no. 9, pp. 4864–4873, 2012.
    IEEE Transactions on Signal Processing, vol. 60, no. 9, pp. 4864–4873, 2012.
    [18] E. Chiu, V. Lau, S. Zhang, and B. Mok, “Precoder design for multiantenna partial decode-and-forward (pdf) cooperative systems with statistical csit and mmse-sic receivers,” IEEE Transactions on Wireless Communications, vol. 11, no. 4, pp. 1343–1349, 2012.
    [19] M. Hasna and M.-S. Alouini, “End-to-end performance of transmission systems with relays over rayleigh-fading channels,” Wireless Communications, IEEE Transactions on, vol. 2, no. 6, pp. 1126–1131, 2003.
    [20] Y. Fan and J. Thompson, “Mimo configurations for relay channels:Theory and practice,” Wireless Communications, IEEE Transactions on, vol. 6, no. 5, pp. 1774–1786, 2007.
    [21] X. Tang and Y. Hua, “Optimal design of non-regenerative mimo wireless relays,” Wireless Communications, IEEE Transactions on,
    vol. 6, no. 4, pp. 1398–1407, 2007.
    [22] Y. Rong and Y. Xiaojun Tang ; Hua, “A unified framework for optimizing linear nonregenerative multicarrier mimo relay communication systems,” Signal Processing, IEEE Transactions on, vol. 57,no. 12, pp. 4837–4851, 2009.
    [23] L. Sanguinetti and A. . Y. R. D’Amico, “A tutorial on the optimization of amplify-and-forward mimo relay systems,” Selected Areas in Communications, IEEE Journal on, vol. 30, no. 8, pp. 1331 -1346, 2012.
    [24] I. Hammerstrom and A. Wittneben, “Power allocation schemes for amplify-and-forward mimo-ofdm relay links,” Wireless Communications, IEEE Transactions on, vol. 6, no. 8, pp. 2798–2802, 2007.
    [25] A. Ribeiro, X. Cai, and G. B. Giannakis, “Symbol error probabilities for general cooperative links,” vol. 4, no. 3, pp. 1264–1273, May2005.
    [26] T. Wang, G. Giannakis, and R. Wang, “Smart regenerative relays for link-adaptive cooperative communications,” vol. 56, no. 11, pp.
    1950–1960, Nov. 2008.
    [27] K. J. Liu, A. K. Sadek, W. Su, and A. Kwasinski, Cooperative Communications and Networking. Cambridge University Press, 2009.
    [28] G. N. Watson, Treatise on the Theory of Bessel Functions, 2th edition, Ed. pp.80 eq.(15) Cambridge University Press, 1966.
    [29] J.-B. Kim, “Performance of dual-hop amplify-and-forward beamforming and its equivalent systems in rayleigh fading channels,”
    IEEE Transactions on Communications, vol. 58, no. 3, pp. 729–732, 2010.

    QR CODE
    :::