跳到主要內容

簡易檢索 / 詳目顯示

研究生: 沈威銘
Wei-Ming Shen
論文名稱: 評價氣候型衍生性商品之一般化模型
A General Model for the Valuation of Weather Derivatives
指導教授: 繆維正
Wei-Cheng Miao
張傳章
C.C. Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 財務金融學系
Department of Finance
畢業學年度: 94
語文別: 英文
論文頁數: 35
中文關鍵詞: 氣候型衍生性商品均衡評價法風險趨避
外文關鍵詞: CDD, HDD, Equilibrium Valuation, Weather Derivatives, Risk Aversion
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文延伸Cao-Wei (2004) 方法之兩大主軸建構一評價氣候衍生性商品的理論模型。第一,採用Campbell and Diebold (2005) 發展出的時間序列模型來描述溫度的動態過程。這個模型的好處在於其不僅自增溫趨勢、季節性與自我相關捕捉到日均溫的條件均值特性,亦能對其條件變異的性質予以掌握。第二,本文延伸Cao and Wei的固定比率之風險趨避效用函數(CPRA)假設,改採廣義冪級數效用函數(Extended power utility function)。其優點是可自由呈現遞增、遞減或固定比率之風險趨避特性。最後本文發現氣溫衍生性商品的價格主要由天氣狀況、折現因子及遠期風險溢酬來決定。此外,造成這些價格變動的起因與風險趨避參數有很密切的關係。本文研究的結果與Cao and Wei的狹義設定下相比是一致的,因此本研究提供了更具一般性的氣溫衍生性商品之評價方法。


    This paper extended the Cao-Wei (2004,JFM) model to construct a theoretical model for pricing weather derivatives in two significant ways. One is to adopt a time series model developed by Campbell and Diebold (2005, JASA) to describe the dynamic of temperature. The advantage of using Campbell and Diebold’s time series model to describe the temperature dynamics is that it can not only take the conditional mean of temperature coming from trend, seasonal, and cyclical components, but also allow for the conditional variance dynamics. The other purpose of this paper is to use an extended power utility function, instead of Cao and Wei’s constant proportional risk aversion (CPRA) utility function. The extended power utility function could exhibit decreasing, constant and increasing relative risk aversion. Eventually, we find that the prices of weather derivatives can be determined by weather conditions, discount factors, and forward premiums. Additionally, these sources have close relations with some risk aversion parameters. Furthermore, the results are consistent with Cao and Wei’s condition under some specific parameter assumptions.

    1. INTRODUCTION 1 2. MODEL SETTINGS 3 2.1 TEMPERATURE BEHAVIOR 4 2.2 AGENT’S PREFERENCE 6 2.3 AGGREGATE DIVIDEND PROCESS 6 3. VALUATION OF CDD/HDD DERIVATIVES 8 3.1 DETERMINATION OF THE DISCOUNT FACTOR 8 3.2 VALUATION OF CDD/HDD FORWARD CONTRACTS AND OPTIONS 10 3.3 DECOMPOSITION OF WEATHER DERIVATIVE PRICES 12 4. MONTE CARLO SIMULATION AND NUMERICAL ANALYSIS 15 4.1 SCENARIO DESIGN AND CORRESPONDING INTEREST RATE STRUCTURE 15 4.2 MONTE CARLO SIMULATION AND RISK-NEUTRAL FORWARD PRICES 19 4.3 SIMULATION RESULTS FOR MARKET PRICE OF RISK 21 5. CONCLUSIONS 24 REFERENCES 25 APPENDIX A 27 APPENDIX B 28 APPENDIX C 32 APPENDIX D 34

    Alaton, P., Djehiche, B., and Stillberger, D., 2002, On Modelling and Pricing Weather Derivatives, Applied Mathematical Finance, 1-20.
    Berrieu, P., and Karoui, N. E., 2002, Optimal design of derivatives in illiquid markets, Quantitative Finance, 181-188.
    Bollerslev, T., 1986, Genaralized ARCH, Journal of Econometrics, 31, 307-327.
    Brockett, P. L., Wang, M., Yang, C., and Zou, H., 2006, Portfolio Effects and Valuation of Weather Derivatives, The Financial Review, 55-76.
    Câmara, A., 2003, A Generalization of the Brennan-Rubinstein Approach for the Pricing of Derivatives, The Journal of Finance, 58, Issue 2, 805-820.
    Campbell, S. D., and Diebold, F.X., 2005, Weather Forecasting for Weather Derivatives, Journal of the American Statistical Association, Vol 100, No. 469, Applications and Case Studies.
    Cao, M., and Wei, J., 2004, Weather Derivatives Valuation and Market Price of Weather Risk, The Journal of Futures Markets, 24, No.11, 1065-1089.
    Cochrane, J. H., and Saá-Requejo, J., 2000, Beyond Arbitrage: Good-Deal Asset Price Bounds in Incomplete Markets, Journal of Political Economy, 79-119.
    Davis, M., 2001, Pricing Weather Derivatives by Marginal Value, Quantitative Finance, 1, 305-308.
    Engle, R. F., 1982, Autoregressive Conditional Heteroskedasticity With Estimates of the Variance of U.K. Inflation, Econometrica, 50, 987-1008.
    Hung, M. W. and Liu, Y. L., 2005, Valuation of Weather Derivatives, Working Paper
    Lucas, R. E., 1978, Asset prices in an exchange economy. Econometrica, 46, 1429-1445.
    Marsh, T. A., and Merton, R., 1987, Dividend Behavior for the Aggregate Stock Market, Journal of Business, 60, 1-40.
    Richards, T. J., Manfredo, M. R., and Sanders, D. R., 2004, Pricing Weather Derivatives, The American Journal of Agriculture Economics, 86(4), 1005-1017
    Shiller, R. J., 1983, Do Stock Prices Move Too Much to be Justified by Subsequent Changes in Dividends? Reply, American Economic Review, 73, No 1, 236-237.

    QR CODE
    :::