跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李曉菁
Siao-Jing Li
論文名稱: 重力場中準局域角動量的旋子表述
Spinor Formulations for the Quasilocal Angular Momentum of Gravitational Fields
指導教授: 聶斯特
James M. Nester
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 94
語文別: 英文
論文頁數: 80
中文關鍵詞: 準局域量Witten 的正能量證明旋子QSL角動量質心距Clifford 代數Clifformdifferential formspinor-valued formWitten''s Hamiltonian重力場
外文關鍵詞: Witten''s positive energy proof, Witten''s Hamiltonian, quasilocal quantities, Clifform, spinor formulation, quasilocal angular momentum, differential form, clifford algebra, spinor-valued form, quadratic spinor Lagrangian, QSL, center-of-mass moment, spinor parameterization, gravitational fields, covariant derivative, spinor-curvature identity
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Witten 的Hamiltonian 和QSL方法提供了兩個漸進平坦時空重力系統能量動量的局域化和重立場正能量的證明, 但關於角動量和質心距則一直尚未被詳細地探討. 本論文先研究是否這兩種 spinor 表示式也能提供準局域角動量和質心距的表示式.
    首先由於角動量是一個 pseudovector, 我們嘗試將Witten Hamiltonian 中位移向量的spinor 向量參數化改成spinor pesudovector 的參數化. 但這樣將導致spinor的發散, 因此我們考慮一個新的由四項二次covaraint 微分構成的 Hamiltonian. 經過仔細檢查後, 我們發現它不能提供一個角動量的表示式. 我們還個別研究由其中兩個不同的兩項構成的 Hamiltonian,但都失敗了. 我們希望能夠找到某些spinor gauge 條件或加上某些項使得 Witten 的方法能成功.
    至於 QSL 方法, 我們發現選擇一個轉動的位移參數化及可得到準局域角動量的表示式. 這是在本論文我們所有測試的表示式中唯一可以成功用來描述重立場角動量的方法.
    一但我們有角動量的表示式, 根據過去的研究, 我們認為只要將此用來描述角動量的 Hamiltonian 加上一個必須的項即可得到質心距表示式, 但我們仍需要作深入的研究.
    Spinor 能量動量表示式提供了重立場正能量的證明. 我們期待一個成功的spinor 角動量表示式能提供某種未被發現的重力場中能量和動量的關係. 如果這樣一個關係真的被找到且證明存在,那將會是重力理論領域的一個重要的里程碑.


    Witten''s spinor formulation and Tung''s QSL approach have provided localizations
    for the energy-momentum of asymptotically flat gravitational systems plus positive
    energy proofs. The spinor formulation for angular momenta, however, had not been
    sufficiently investigated in the past. In this thesis we discuss Witten''s approach and
    the QSL approach adapted for angular momenta. Noting that replacing the vectorial
    spinor parameterization of the displacement in Witten''s Hamiltonain by a pseudovec-
    torial spinor parameterization leads to unsatisfying behavior of the spinor field, we
    consider a new quadratic spinor Hamiltonian containing four quadratic spinor terms,
    whose parameterization of the displacement is a satisfying antisymmetric tensor. This
    Hamiltonian is, however, found to be unsuccessful after testing. From the process of
    testing this Hamiltonian, we guess it may be successful if we just pick two promising
    terms to compose the spinor Hamiltonian for the angular momentum. After a detailed
    survey, we find it still has a problem| its boundary term has a redundant term in
    addition to the expected form asymptotically. Nor is the Hamiltonian composed of
    the other two terms a good choice for it has other problems in addition to that of
    the former 2-term Hamiltonian. Then we speculate that Witten''s approach might be
    successful for angular momenta by assuming some spinor gauge conditions, which is
    being sought. We also explore the QSL approach, finding that the QSL Hamiltonian
    is successful for the quasilocal angular momentum as long as we choose certain spinor
    gauge conditions. Since the QSL approach is successful for angular momenta, we are
    ready to the exploration of the quasilocal center-of-mass moment, for which a necessary
    term should be added to the QSL Hamiltonian. From some clues, we expect a suc-
    cessful spinor angular momentum expression will lead us to some connection between
    the energy and angular momentum of a asymptotically flat gravitational system. If
    this connection can be figured out and proved to exist, this will be a grand milestone in the area of gravitational research, for the connection will provide a further norm
    for a good expression for the angular momentum of a gravitational system.

    Table of Contents iv Abstract vi 1 Introduction 1 2 Clifford Algebras, Clifforms and Spinor-valued Forms 6 2.1 Clifford Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Spinors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Clifforms and Spinor-valued Forms . . . . . . . . . . . . . . . . . . . 18 3 The Hamiltonian Formulation and the Failure of the Witten Spinor Hamiltonian for Angular Momenta 23 4 Spinor Hamiltonian Formulation for Angular Momenta 29 4.1 Full 4 Terms of the Spinor Hamiltonian . . . . . . . . . . . . . . . . . 29 4.2 2 Terms among the Spinor Hamiltonian . . . . . . . . . . . . . . . . . 41 4.3 The Other 2 Terms among the Spinor Hamiltonian . . . . . . . . . . 48 5 The Quadratic Spinor Lagrangian 51 5.1 Angular Momenta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.2 Center-Of-Mass Moments . . . . . . . . . . . . . . . . . . . . . . . . 63 6 Conclusion 65 Bibliography 68 A Some Basic Geometric Objects 71 A.1 Geometric Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 A.2 Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 A.3 Covector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 A.4 Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 A.5 Differential Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 A.6 Lie Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 A.7 Covariant Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 A.8 Einstein''s Field Equation . . . . . . . . . . . . . . . . . . . . . . . . . 80

    [1] Herbert Goldstein, Charles Poole, John Safko, Classical Mechanics, Addison Wes-
    ley, 2002
    [2] Theodore Frankel, The Geometry of Physics, an Introduction, Cambridge Univer-
    sity Press, 1997, 2004
    [3] C. W. Misner, K. S. Thorne, J. A. Wheeler, Gravitation, Freemann, San Francisco,
    1973
    [4] T. Regge and C. Teitelboim, Role of Surface Integrals in the Hamiltonian Formu-
    lation of General Relativity, Ann. Phys. 88 (1974), 286-319
    [5] R. Beig and N. O Murchadha, The Poincare Group as the Symmetry Group of
    Canonical General Relativity, Ann. Phys. 174 (1987), 463-498
    [6] L. Szabados, On the roots of the Poincare structure of asymptotically flat space-
    times, Class. Quantum Grav. 20 (2003) 2627
    [7] L. Szabados Living Rev. Relativity 7 (2004), http://www.livingreviews.org/lrr-
    2004-4
    [8] C.-M. Chen, J. M. Nester and R.-S. Tung, The Hamiltonian boundary term and
    quasi-local energy flux, Phys. Rev. D 72 (2005) 104020. [arXiv:gr-qc/0508026]
    [9] A. Dimakis and F. MÄuller-Hoissen, Clifform calculus with applications to classical
    field theories, Class. Quantum Grav. 8 (1991), 2093-2132
    [10] W. K. Tung, Group Theory in Physics, World Scientific Publishing Co Pte Ltd,
    Philadelphia, 1985
    [11] Lewis H.Ryder, Quantum field theory, Kent, Canterbury, 1984
    [12] E. Witten, A New Proof of the Positive Energy Theorem, Comm. Math. Phys.
    80 (1981), 381-402
    [13] J. M. Nester, A New Gravitational Energy Expression with a Simple Positivity
    Proof, Phys. Lett. A 83 (1981), 241-242
    [14] J. M. Nester, R. S. Tung and V. Zhytnikov, Some spinor-curvature identity,
    Class. Quant. Grav. 11 (1994), 983-987
    [15] J. M. Nester, R. S. Tung and Y. X. Zhang, Ashtekar''s New Variables and Positive
    Energy, Class. Quant. Grav. 11 (1994),757-766
    [16] C. M. Chen, J. M. Nester and R. S. Tung, Quasilocal energy-momentum for
    geometric gravity theories, Phys. Lett. A 203 (1995), 5-11
    [17] J. M. Nester and R. S. Tung, Another positivity proof and gravitational energy
    localizations, Phys. Rev. D 49 (1994), 3958{3962
    [18] J. M. Nester and R. S. Tung, A Quadratic Spinor Lagrangian for General Rela-
    tivity, Gen. Rel. Grav. 27 (1995), 115-119
    [19] R. S. Tung and J. M. Nester, The quadratic spinor Lagrangian is equivalent to
    the teleparallel theory, Phys. Rev. D 60 (1999), 021501
    [20] C.M. Chen, J.M. Nester and R.S. Tung, 2003
    Spinor Formulations for Gravitational Energy-Momentum
    Ch 27 in Clifford Algebras: Applications to Mathematics Physics, and Engineering.
    ed R. Ablamowicz, (Birkhauser,2004), pp 417-430 arXiv:gr-qc/0209100
    [21] C.-C. Chang, J. M. Nester and C.-M. Chen, Energy-Momentum (Quasi-
    )Localization for Gravitating Systems, in Gravitation and Astrophysics, Eds. Liao
    Liu, Jun Luo, X-Z. Li, J-P. Hsu, World Scientific, Singapore, 2000, 163-173; arXiv:
    gr-qc/9912058
    [22] C.-M. Chen and J. M. Nester, Quasilocal Quantities for General Relativity and
    other Gravity Theories, Class. Quantum Grav. 16 (1999), 1279-1304; arXiv: gr-
    qc/9809020
    [23] J. M. Nester, The gravitational Hamiltonian, in Asymptotic Behavior of Mass
    and Space-Time Geometry (Lecture Notes in Physics vol 202), Ed. F. Flaherty,
    Springer, Berlin, 1984, 155-163
    [24] C.-M. Chen and J. M. Nester, A Symplectic Hamiltonian Derivation of Quasilocal
    Energy-Momentum for GR, Gravitation & Cosmology 6 (2000), 257{270; arXiv:
    gr-qc/0001088
    [25] K. H. Vu, Quasilocal energy-momentum and angular momentum for teleparallel
    gravity, MSc. Thesis, National Central University, 2000
    [26] F-H. Ho, Quasilocal Center-of-Mass for GR teleparallel, (MSc thesis, NCU, 2003)
    [27] J.M. Nester, F-H. Ho and C-M. Chen, Quasilocal center-of-mass for teleparallel
    gravity, in proceedings of The Tenth Marcel Grossman Meeting ed M. Novello, S.P.
    Bergliaffa, R. Ruffini (World Scientific, Singapore, 2005) pp 1483-94
    [28] F. F. Meng, Quasilocal center-of-mass moment in GR, MSc. Thesis, National
    Central University, 2002
    [29] J. M. Nester, F. F. Meng and C. M. Chen, Quasilocal Center-of-Mass J. Korean
    Phys. Soc. 45 (2004) S22{S25. [arXiv: gr-qc/0403103]

    QR CODE
    :::