| 研究生: |
張善芸 Shan-Yun Chang |
|---|---|
| 論文名稱: |
噻吩并[3,4-c]吡咯-4, 6-二酮(TPD)之鈀催化直接碳氫鍵芳香環化反應之研究: 以高步驟經濟效益合成策略製備含TPD之功能性π-共軛小分子 Pd-Catalyzed Direct C-H Arylation of Thieno[3,4-c]pyrrole- 4,6-dione (TPD): A Step-Economical Synthetic Alternative to Access Symmetrical π-Conjugated Functional Molecules |
| 指導教授: |
劉青原
Ching-Yuan Liu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 126 |
| 中文關鍵詞: | 噻吩并[3,4-c]吡咯-4, 6-二酮 、鈀催化直接碳氫鍵芳香環化反應 、高步驟經濟效益 、功能性π-共軛小分子 |
| 外文關鍵詞: | Thieno[3,4-c]pyrrole- 4,6-dione, Pd-Catalyzed Direct C-H Arylation, Step-Economical, π-Conjugated Functional Molecules |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以thieno[3,4-c]pyrrole-4,6-dione (TPD)為核心作分子共軛延伸的結構已在光電元件上被廣泛研究,在本論文中,探討以鈀催化直接碳氫鍵活化之方法取代傳統的交叉耦合反應來製備含TPD單元的π共軛功能性小分子。碳氫鍵活化的方法不僅具有步驟經濟性、原子經濟性、減少副產物產生,成本低於傳統的交叉耦合反應,故鈀催化之直接碳氫鍵活化之合成方法已逐漸取代傳統交叉耦合反應。
本研究一開始以TPD與溴苯為反應物,嘗試不同的催化劑、配位基、鹼、溶劑,以找到最佳化條件,其中,我們發現溶劑的極性對於反應的轉換率具有決定性的影響。利用找到的最佳化條件,TPD或其衍生物與具有各種不同官能基的芳香基溴化物可順利地進行鈀催化碳氫鍵活化的反應。此反應中對於官能基容忍性非常好,像是酯基、腈基、酮基、醛基還有含鹵素基都是可以被容忍的。
We demonstrate a step-economical and viable synthetic alternative to access a series of thieno[3,4-c]pyrrole-4,6-dione (TPD)-based π-conjugated molecules through Pd-catalyzed direct C-H arylations. A comprehensive synthetic study including the screening of various kinds of palladium catalysts, ligands, and bases is reported. Under the optimum reaction conditions, TPD and its common derivatives underwent efficient and mild direct C-H arylations with a variety of functionalized bromoarenes. Functional groups such as ester, nitrile, ketone, aldehyde, and halide were well-tolerated, which substantially extended the reaction scope. We wish the reported method would provide materials scientists a relatively greener synthetic route to efficiently prepare the TPD-containing π-functional materials.
[1] D. J. Schipper and K. Fagnou, “ Direct Arylation as a Synthetic Tool for the Synthesis of Thiophene-Based Organic Electronic Materials ”, Chem. Mater., Vol 23, pp. 1594-1600, March 2011.
[2] W. Li, C. Du, F. Li, Y. Zhou, M. Fahlman, Z. Bo and F. Zhang, “ Benzothiadiazole-Based Linear and Star Molecules: Design, Synthesis, and Their Application in Bulk Heterojunction Organic Solar Cells ”, Chem. Mater., Vol 21, pp. 5327-5334, November 2009.
[3] A. Facchetti, M.-H. Yoon, C. L. Stern, H. E. Katz, T. J. Marks, “Building Blocks for n-Type Organic Electronics: Regiochemically Modulated Inversion of Majority Carrier Sign in Perfluoroarene-Modified Polythiophene Semiconductors”, Angew. Chem. Int. Ed., Vol 42, pp. 3900-3903, August 2003.
[4] Q. Zhang, Y. Li, M. Yang, J. Mater. Sci., Vol 39, pp. 6089-6091, 2004.
[5] T. Satoh, Y. Kawamura, M. Miura and M. Nomura, “ Palladium-Catalyzed Regioselective Mono- and Diarylation Reactions of 2-Phenylphenols and
Naphthols with Aryl Halides ”, Angew. Chem. Int. Ed., Vol 109, pp. 1740-1742, September 1997.
[6] L. Ackermann, S. Barfüßer, “ Palladium-Catalyzed Direct C-3 Arylations of Indoles with an Air-Stable HASPO ”, Synlett., Vol 2009, pp. 808 – 812, March 2009.
[7] K. Ueda, S. Yanagisawa, J. Yamaguchi, K. Itami, “ A General Catalyst for the β-Selective C–H Bond Arylation of Thiophenes with Iodoarenes ”, Angew. Chem. Int. Ed., Vol 122, pp. 9130-9133, November 2010.
[8] S. Tamba, R. Fujii, A. Mori, K. Hara, N. Koumura, “ Synthesis and Properties of Seleno-analog MK-organic Dye for Photovoltaic Cells Prepared by C-H Functionalization Reactions of Selenophene Derivatives ”, Chem. Lett., Vol 40, pp. 922-924, September 2011.
[9] P. Berrouard, A. Najari, A. Pron, D. Gendron, P.-O. Morin, J.-R. Pouiot, J. Veilleux, M. Leclerc, “ Synthesis of 5-Alkyl[3,4-c]thienopyrrole-4,6-dione-
Based Polymers by Direct Heteroarylation ”, Angew. Chem. Int. Ed., Vol 51, pp. 2068-2071, February 2012.
[10] Q. Wang, M. Wakioka, F. Ozawa, “ Synthesis of End-capped Regioregular Poly(3-hexylthiophene)s via Direct Arylation ”, Macromol. Rapid Commun., Vol 33, pp. 1203-1207, July 2012.
[11] M. Wakioka, N. Ichihara, Y. Kitano, F. Ozawa, “ A Highly Efficient Catalyst for the Synthesis of Alternating Copolymers with Thieno[3,4‑c]pyrrole-4,6-dione Units via Direct Arylation Polymerization ”, Macromolecules, Vol 47, pp. 626-631 , January 2014.
[12] W. Lu, J. Kuwabara, T. Iijima, H. Higashimura, H. Hayashi, T. Kanbara, “ Synthesis of π-Conjugated Polymers Containing Fluorinated Arylene Units via Direct Arylation: Efficient Synthetic Method of Materials for OLEDs ”, Macromolecules, Vol 45, pp. 4128-4133, May 2012.
[13] Y. Lin, P. Cheng, Y. Liu, X. Zhao, D. Li, J. Tan, W. Hu, Y. Li, X. Zhan, “ Solution-processable small molecules based on thieno[3,4-c]pyrrole-4,6
-dione for high-performance solar cells ”, Sol. Energ. Mat. Sol., Vol 99, pp. 301-307, April 2012.
[14] Q. Feng, W. Zhang, G. Zhou, Z.-S. Wang, “ Enhanced Performance of Quasi-Solid-State Dye-Sensitized Solar Cells by Branching the Linear Substituent in Sensitizers Based on Thieno[3,4-c]pyrrole-4,6-dione ”, Chem. Asain J., Vol 8, pp. 168-177, October 2013.
[15] Y. Zou, A. Najari, P. Berrouard, S. Beaupré, B. R. Aïch, Y. Tao, M. Leclerc, “ A Thieno[3,4-c]pyrrole-4,6-dione-Based Copolymer for Efficient Solar Cells ”, J. Am. Chem. Soc., Vol 132, pp. 5330-5331, April 2010.
[16] C. Piliego, T. W. Holcombe, J. D. Douglas, C. H. Woo, P. M. Beaujuge, J. M. J. Fréchet, “ Synthetic Control of Structural Order in N-Alkylthieno
-[3,4-c]pyrrole-4,6-dione-Based Polymers for Efficient Solar Cells ”, J. Am. Chem. Soc., Vol 132, pp. 7595-7597, June 2010.
[17] A. Najari, S. Beaupré, P. Berrouard, Y. Zou, J.-R. Pouliot, C. Lepage-Pérusse, M. Leclerc, “ Synthesis and Characterization of New Thieno[3,4-c]pyrrole-4,6-dione Derivatives for Photovoltaic Applications ”, Adv. Funct. Mater., Vol 21, pp. 718-728, February 2011.
[18] D. H. Wang, A. Pron, M. Leclerc, A. J. Heeger, “ Additive-Free Bulk-
Heterojuction Solar Cells with Enhanced Power Conversion Efficiency
, Comprising a Newly Designed Selenophene-Thienopyrrolodione Copolymer ”, Adv. Funct. Mater., Vol 23, pp. 1297-1304, March 2013.
[19] Q. Wu, M. Wang, X. Qiao, Y. Xiong, Y. Huang, X. Gao, H. Li, “ Thieno -[3,4‑c]pyrrole-4,6-dione Containing Copolymers for High Performance Field-Effect Transistors ”, Macromolecules, Vol 46, pp. 3887-3894, May 2013.
[20] L.-F. Lai, C.-L. Ho, Y.-C. Chen, W.-J. Wu, F.-R. Dai, C.-H. Chui, S.-P. Huang, K.-P. Guo, J.-T. Lin, H. Tian, S.-H. Yang, W.-Y. Wong, “ New bithiazole-functionalized organic photosensitizers for dye-sensitized solar
cells ”, Dyes Pigment., Vol 96, pp. 516-524, February 2013.
[21] H. Shang, H. Fan, Q. Shi, S. Li, Y. Li, X. Zhan, “ Solution processable D–A–D molecules based on triphenylamine for efficient organic solar cells ”,
Sol. Energ. Mat. Sol., Vol 94, pp. 457–464, March 2010.
[22] Q. Shi, P. Cheng, Y. Li, X. Zhan, “ A Solution Processable D-A-D Molecule based on Thiazolothiazole for High Performance Organic Solar Cells ”, Adv. Energy Mater., Vol 2, pp.63-67, January 2011.
[23] Y. Ie, M. Nitani, T. Uemura, Y. Tominari, J. Takeya, Y. Honsho, A. Saeki, S. Seki, Y. Aso, “ Comprehensive Evaluation of Electron Mobility for a Trifluoroacetyl-Terminated Electronegative Conjugated Oligomer ”, J. Phys. Chem. C, Vol 113, pp. 17189-17193, October 2009.
[24] M. Nitani, Y. Ie, H. Tada, Y. Aso, “ Solution-Processable n-Type Organic Field-Effect Transistor (OFET) Materials Based on Carbonyl-Bridged Bithiazole and Dioxocyclopentene-Annelated Thiophenes ”, Chem. Asian J., Vol 6, pp. 2352-2361, September 2011.
[25] T. Kono, D. Kumaki, J. Nishida, S. Tokito, Y. Yamashita, “ Dithienyl-
benzobis(thiadiazole) based organic semiconductors with low LUMO levels and narrow energy gaps ”, Chem. Commun., Vol 46, pp. 3265-3267, May 2010.
[26] A. Borghese, G. Geldhof, L. Antoine, “ Direct C–H arylation of 3-methoxythiophene catalyzed by Pd. Application to a more efficient synthesis of p-alkoxy-oligothiophene derivatives ”, Tetrahedron Lett., Vol 47, pp. 9249-9252, December 2006.
[27] S. Pivsa-Art, T. Satoh, Y. Kawamura, M. Miura, M. Nomura, “ Palladium-Catalyzed Arylation of Azole Compounds with Aryl Halides in the Presence of Alkali Metal Carbonates and the Use of Copper Iodide in the Reaction ”, Bull. Chem. Soc. Jpn., Vol 71, pp. 467-473, 1998.
[28] B. Liégault, D. Lapointe, L. Caron, A. Vlassova, K. Fagnou, “ Establishment of Broadly Applicable Reaction Conditions for the Palladium-Catalyzed Direct Arylation of Heteroatom-Containing Aromatic Compounds ”, J. Org. Chem., Vol 74, pp. 1826-1834, March 2009.
[29] S. Ando, J. Nishida, H. Tada, Y. Inoue, S. Tokito, Y. Yamashita, “ High Performance n-Type Organic Field-Effect Transistors Based on π-Electronic Systems with Trifluoromethylphenyl Groups ”, J. Am. Chem. Soc., Vol 127, pp. 5336-5337, April 2005.
[30] S. W. Yun, J. H. Kim, S. Shin, H. Yang, B.-K. An, L. Yang, S. Y. Park, “ High-Performance n-type Organic Semiconductors: Incorporating Specific Electron-Withdrawing Motifs to Achieve Tight Molecular Stacking and Optimized Energy Levels ”, Adv. Mater., Vol 24, pp. 911-915, February 2012.
[31] L. Wang, X. Zhang, H. Tian, Y. Lu, Y. Geng, F. Wang, “ A cyano-
terminated dithienyldiketopyrrolopyrrole dimer as a solution processable ambipolar semiconductor under ambient conditions ”, Chem. Commun., Vol 49, pp. 11272-11274, December 2013.
[32] C. Wetzel, A. Mishra, E. Mena-Osteritz, A. Liess, M. Stolte, F. Würthner, P. Bäuerle, “ Synthesis and Structural Analysis of Thiophene-Pyrrole-Based S,N‑Heteroacenes ”, Org. Lett., Vol 16, pp. 362-365, January 2014.
[33] D. Patra, T.-Y. Huang, C.-C. Chiang, R. O. V. Maturana, C.-W. Pao, K.-C. Ho, K.-H. Wei, C.-W. Chu, “ 2‑Alkyl-5-thienyl-Substituted Benzo[1,2‑b:4,5‑b′]dithiophene-Based Donor Molecules for Solution-Processed Organic Solar Cells ”, ACS Appl. Mater. Interfaces, Vol 5, pp. 9494-9500, October 2013.
[34] (a) S. I. Gorelsky, D. Lapointe, K. Fagnou, “ Analysis of the Concerted Metalation-Deprotonation Mechanism in Palladium-Catalyzed Direct Arylation Across a Broad Range of Aromatic Substrates ”, J. Am. Chem. Soc., Vol 130, pp.10848-10849, August 2008. (b) M. Lafrance, K. Fagnou, “Palladium-Catalyzed Benzene Arylation: Incorporation of Catalytic Pivalic Acid as a Proton Shuttle and a Key Element in Catalyst Design ”, J. Am. Chem. Soc., Vol 128, pp. 16496-16497, December 2006.