跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林曉君
Hsiao-chun Lin
論文名稱: 使用VVM探討陸氣交換過程對台灣地區高解析氣象模擬的影響--理想個案模擬
An idealized simulation to understand impact of land-air exchanging process on fine scale meteorological characteristics in Taiwan using VVM
指導教授: 鄭芳怡
Fang-yi Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 大氣物理研究所
Graduate Institute of Atmospheric Physics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 92
中文關鍵詞: Vector Vorticity equation ModelNoah 地表模式陸氣交換過程高解析氣象模擬
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣夏季大氣常處於熱力不穩定的狀態,加上盛行西南風的吹拂,帶進充沛的水氣,容易於西南部平地及山區產生午後熱對流,可能會於局部地區降下瞬時大雨導致淹水,另外在盆地及山區會有局部熱力環流(如:山谷風環流)產生,也會影響降雨的形成及分布,還有大氣汙染物的擴散及累積,對人民的生活造成衝擊,不過這些較小尺度的系統無法被中尺度氣象模式解析。如今,隨著電腦計算能力進步,數值氣象模式也走向高解析度的模擬,並可用來探討小尺度天氣系統及其對大氣及環境的影響,然而應用至台灣的困難點在於複雜地形的處理,在地形陡峭的地方容易因氣壓的急遽變化,使模式變得計算不穩定。本篇使用vector vorticity equation model (VVM)進行台灣地區高解析氣象模擬,因為VVM使用高度垂直座標,應用至崎嶇複雜地形時較為合適,但因VVM缺乏完善的地表處理過程,因此本研究主要目的為(1)將Noah地表模式(land surface model, LSM)加入VVM中以改善陸地與大氣交換過程;(2)並藉由理想化的模擬實驗探討陸氣耦合過程對台灣地區高解析氣象模擬的影響。
    本研究共進行六組敏感度實驗,用以探討陸地與大氣交互作用、都市熱島效應對局部環流及邊界層發展的影響以及土壤濕度與溫度初始值對氣象場模擬的影響。目前已成功將Noah地表模式耦合進VVM,而耦合系統的理想模擬實驗結果顯示,地表熱通量會受到地表特性(如:土地利用及土壤型態)影響而呈現異質性分布,地表潛熱及可感熱通量的多寡與正負會影響地表與大氣之間的熱量與水氣的傳送大小及方向,地表於白天的加熱作用與晚間的冷卻作用也因此被突顯出來,而加強了海洋與陸地之間的溫度梯度,導致顯著的日夜向岸與離岸氣流特性;再者,高解析VVM/Noah氣象模擬顯示都市熱島效應對邊界層結構及午後內陸輻合強度的影響;然而,改變初始土壤濕度及溫度對氣象場的模擬沒有太顯著的影響,主要原因可能是spin-up時間不足。實驗結果亦顯示完善的地表模式是必要的,因為地表邊界條件會大大影響後續的熱量與水氣傳送,影響氣象場模擬。


    Nowadays, with the improvement in the computing capability, high-resolution meteorological simulations can be conducted to understand the fine scale weather systems and its impact on the atmosphere and environment. However, the difficulty of applying fine-scale meteorological simulation in Taiwan lies in the treatment of the complex topography. In the region with steep terrain, the error induced by the abrupt change of pressure would cause the computational instability in numerical model. In this study, vector vorticity equation model (VVM) was applied in the area of Taiwan. Unfortunately, the VVM lacks the capability to simulate the heterogeneous land surface processes variations. Regarding the deficiency of providing the land-air exchanging processes from VVM, we first implemented the Noah land surface model (LSM) to VVM. The study objectives include: (1) to implement the Noah LSM in VVM; (2) to understand the impact of land surface exchanging processes on the fine-scale meteorological simulation in Taiwan through idealized experiments.

    Six idealized experiments were conducted to understand the impact of land-air exchanging process on the thermal structures and local circulations in area of Taiwan using VVM/Noah coupling system. The current implementation of Noah LSM to VVM is successful and the simulated results show the impact of land surface heterogeneity on the meteorological characteristics through the idealized VVM simulations. The quantity and sign of surface heat fluxes represent the amount and direction of the heat and moisture transport. With the Noah LSM, the land-sea heating contrast is magnified and thus leads to the increase of temperature gradient between land and sea. Hence, onshore and offshore flows at the daytime and nighttime are apparently noticed. Further, the results also shows that urban heat island did has an impact on PBL development and convergence zone in the inland. Moreover, the change of initial soil moisture and temperature show slight influence on the meteorological simulation due to the lack of proper spin-up process. In general, the implication of the simulated results claims that an adequate land surface model is necessary because it serves to provide the lowest boundary condition to drive the meteorological modeling.

    摘要 i Abstract ii 致謝 iv Table of Contents v List of Tables vii List of Figures viii Chapter 1 Introduction 1 Chapter 2 Model description 4 2.1 Governing equations in VVM 4 2.2 Description of Noah land surface model 6 2.2.1 Thermodynamics 7 2.2.2 Hydrology 7 2.3 Surface heat fluxes estimated in VVM and Noah LSM 8 2.3.1 VVM 8 2.3.2 Noah Land Surface Model 9 Chapter 3 Model configuration and experimental design 13 3.1 Model configuration 13 3.2 Experimental design 13 3.3 Initial conditions and land surface properties 14 Chapter 4 Result and discussion 16 4.1 Comparison between CTRL and w/LSM experiments 16 4.1.1 Spatial and temporal distribution of simulated surface heat fluxes 16 4.1.2 Distributions of near-surface meteorological variables 18 4.1.3 Comparisons of vertical profile 19 4.1.4 Temporal evolution of thermal and hydrological characteristics 21 4.2 Interaction between urban heat island and local circulation 23 4.2.1 Spatial distribution of surface heat fluxes 23 4.2.2 Vertical cross section comparisons 24 4.3 Impact of soil moisture initialization on meteorological field 25 4.3.1 Soil moisture initialization process 26 4.3.2 Soil temperature initialization process 27 4.3.3 Temporal evolution of surface meteorological variables 28 Chapter 5 Conclusion and future work 29 References 32 Table 38 Figure 39

    Anthes, R. A., 1984: Enhancement of convective precipitation by mesoscale variation in
    vegetative covering in semiarid regions. J. Clim. Appl. Meteorol., 23, 541-554.
    Avissar, R. and Y. Liu, 1996: Three-dimensional numerical study of shallow convective
    clouds and precipitation induced by land surface forcing. J. Geophys. Res., 101(D3), 7499–7518, doi:10.1029/95JD03031.
    Baker, R. D., B. H. Lynn, A. Boone, W.-K. Tao, and J. Simpson, 2001: The Influence of Soil
    Moisture, Coastline Curvature, and Land-Breeze Circulations on Sea-Breeze-Initiated Precipitation. J. Hydrometeor, 2, 193–211.
    Chen, C.-S., and Y.-L. Chen, 2003: The rainfall characteristics of Taiwan. Mon. Wea. Rev.,
    131, 1323-1341.
    Chen, C.-S., Y.-L. Chen, C.-L. Liu, P.-L. Lin, and W.-C. Chen, 2007: Statistics of heavy
    rainfall occurrences in Taiwan. Wea. Forecasting, 22, 981-1002.
    Chen, F., K. Mitchell, J. Schaake, Y. Xue, H. Pan, V. Koren, Y. Duan, M. Ek, and A. Betts,
    1996: Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res., 101, 7251-7268.
    Chen, F., Z. Janjic, and K. Mitchell, 1997: Impact of atmospheric surface layer
    parameterization in the new land-surface scheme of the NCEP Mesoscale Eta numerical model. Bound.-Layer Meteor., 185, 391-421.
    Chen, F. and J. Dudhia, 2001a: Coupling an Advanced Land Surface-Hydrology Model with
    the Penn State-NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. Mon. Wea. Rev., 129, 569-585.
    Chen, F. and J. Dudhia, 2001b: Coupling an Advanced Land Surface–Hydrology Model with
    the Penn State–NCAR MM5 Modeling System. Part II: Preliminary Model Validation. Mon. Wea. Rev., 129, 587–604.
    Cheng, F.-Y., Y.-C. Hsu, P.-L. Lin, and T.-H. Lin, 2013: Investigation of the Effects of
    Different Land Use and Land Cover Patterns on Mesoscale Meteorological Simulations in the Taiwan Area. J. Appl. Meteor. Climatol.,52, 570–587.
    Cosby, B. J., G. M. Hornberger, R. B. Clapp, and T. R. Ginn, 1984: A statistical exploration of
    the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res., 20, 682-690.
    Deardorff, J. W., 1972: Parameterization of the planetary boundary layer for use in general
    circulation models. Mon. Wea. Rev., 100, 93-106.
    Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grummann, V. Koren, G. Gayno, and J. D.
    Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational Mesoscale Eta Model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.
    Grossman-Clarke, S., J. A., Zehnder, W. L. Stefanov, Y. Liu, and M. A. Zoldak, 2005: Urban
    modifications in a mesoscale meteorological model and the effects on near-surface variables in an arid metropolitan region, J. Appl. Meteorol., 44, 1281–1297.
    Hsu, C.-C., 2008: The effect of land use type on the simulated local circulation and
    precipitation over Taiwan. National Central University, Master thesis.
    Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D.
    Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmospheres, 113(D13), n/a–n/a, doi:10.1029/2008JD009944.
    Jacquemin, B., and J. Noilhan, 1990: Sensitivity study and validation of a land surface
    parameterization using the HAPEX-MOBILHY data set. Bound.-Layer Meteor., 52, 93-134.
    Janjić, Z. I., 1989: On the pressure gradient force error in σ–coordinate spectral models. Mon.
    Wea. Rev., 117, 2285-2292.
    Janjić, Z. I., 1990: The Step-Mountain Coordinate: Physical Package. Mon. Wea. Rev., 118,
    1429–1443.
    Janjić, Z. I., 1994: The Step-Mountain Eta Coordinate Model: Further Developments of the
    Convection, Viscous Sublayer, and Turbulence Closure Schemes. Mon. Wea. Rev., 122, 927–945.
    Janjić, Z. I., 1996: The surface layer in the NCEP Eta Model, Eleventh Conference on
    Numerical Weather Prediction, Norfolk, VA, 19–23 August; Amer. Meteor. Soc., Boston, MA, 354–355.
    Janjić, Z. I., 2002: Nonsingular Implementation of the Mellor–Yamada Level 2.5 Scheme in
    the NCEP Meso model, NCEP Office Note, No. 437, 61 pp.
    Jung, J.-H., and A. Arakawa, 2008: A Three-Dimensional Anelastic Model Based on the
    Vorticity Equation. Mon. Weather Rev., 136(1), 276–294, doi:10.1175/2007MWR2095.1.
    Jung, J.-H., and A. Arakawa, 2010: Development of a Quasi-3D Multiscale Modeling
    Framework: Motivation, basic algorithm and preliminary results. J. Adv. Model. Earth Syst., Vol. 2, Art. #11, 31 pp.
    Kerns, B. W. J., Y.-L. Chen, and M.-Y. Chang, 2010: The Diurnal Cycle of Winds, Rain, and
    Clouds over Taiwan during the Mei-Yu, Summer, and Autumn Rainfall Regimes. Mon. Wea. Rev., 138, 497–516.
    Krueger, S. K., 1988: Numerical simulation of tropical cumulus clouds and their interaction
    with the subcloud layer. J. Atmos. Sci., 45, 2221-2250.
    Krueger, S. K., Q. Fu, K. N. Liou, and H.-N. S. Chin, 1995: Improvements of an Ice- Phase
    Microphysics Parameterization for Use in Numerical Simulations of Tropical Convection, J. Appl. Meteorol., 34(1), 281–287, doi:10.1175/1520-0450- 34.1.281.
    Kwok, R.H.F., J.C.H. Fung, A.K.H. Lau, and Z.S. Wang, 2012: Tracking emission sources of
    sulfur and elemental carbon in Hong Kong/Pearl River Delta region. J. Atmos. Chem., 69, 1-22. http://dx.doi.org/10.1007/s10874-012-9226-5.
    Koren, V., J. Schaake, K. Mitchell, Q.-Y. Duan, and F. Chen, 1999: A parameterization of
    snowpack and frozen ground intended for NCEP weather and climate models. J. Geophys. Res., 104, 19569-19585.
    Lam, J. S. L., A. K. H. Lau, and J. C. H. Fung, 2006: Application of refined land-use
    categories for high resolution mesoscale atmospheric modeling. Bound.-Layer Meteor., 119, 263– 288.
    Lai, Y.-J., M.-D. Chou, and P.-H. Lin, 2010: Parameterization of topographic effect on surface
    solar radiation. J. Geophys. Res., 115, D01104, doi: 10.1029/2009JD012305.
    Leung, K.-W., and T.-T. Chen, 1957: Soils of Taiwan. Journal of the Agricultural Association
    of China New Series, 20, 1-25.
    Lin, T.-S., and F.-Y. Cheng 2015: Impact of soil moisture initialization and soil texture on
    simulated land-atmosphere interaction in Taiwan. J. of Hydrometeorology. Submitted.
    Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a
    cloud model. J. Climate. Appl. Meteor., 22, 1065-1092.
    Lord, S. J., H. E. Willoughby and J. M. Piotrowicz, 1984: Role of a parameterized ice-phase
    microphysics in an axisymmetric, nonhydrostatic tropical cyclone model. J. Atmos. Sci., 41, 2836-2848.
    Lu, X., K.-C. Chow, T. Yao, J. C. H. Fung, and A. K. H. Lau, 2009: Seasonal variation of the
    land-sea breeze circulation in the Pearl River Delta region. J. Geophys. Res., 114, D17112, doi: 10.1029/2009JD011764.
    Pleim, J. E., and A. Xiu, 2003: Development of a land surface model. Part II: Data
    assimilation. J. Appl. Meteor., 42, 1811-1822.
    Mahrt, L., and M. Ek, 1984: The influence of atmospheric stability on potential evaporation.
    J. Climate Appl. Meteor., 23, 222-234.
    Mahrt, L., and H. L. Pan, 1984: A two-layer model of soil hydrology. Bound.-Layer Meteor.,
    29, 1-20.
    Monin, A.S. and A.M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of
    the atmosphere. Contrib. Geophys. Inst. Acad. Sci., USSR, (151), 163–187 (in Russian).
    Noilhan, J., and S. Planton, 1989: A simple parameterization of land surface processes for
    meteorological models. Mon. Wea. Rev., 117, 536-549.
    Pan, H.-L., and L. Mahrt, 1987: Interaction between soil hydrology and boundary-layer
    development. Bound.-Layer Meteor., 38, 185-202.
    Reen, B. P., D. R. Stauffer, and K. J. Davis, 2014: Land-Surface Heterogeneity Effects in the
    Planetary Boundary Layer. Boundary-Layer Meteorology 150, 1-31.
    Rodell, M., P. R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C.-J. Meng, K. Arsenault, B.
    Cosgrove, J. Radakovich, M. Bosilovich, J. K. Entin, J. P. Walker, D. Lohmann, and D. Toll, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85(3), 381-394.
    Schaake, J. C., V. I. Koren, Q. Y. Duan, K. Mitchell, and F. Chen, 1996: A simple water
    balance model (SWB) for estimating runoff at different spatial and temporal scales. J. Geophys. Res., 101, 7461-7475.
    Shutts, G. J. and M. E. B. Gray, 1994: A numerical modeling study of the geostrophic
    adjustment process following deep convection. Quart. J. Roy. Meteor. Soc., 120, 1145-1178.
    Steeneveld, G.J., B.J.H. van de Wiel, and A.A.M. Holtslag (2006), Modeling the evolution of
    the atmospheric boundary layer coupled to the land surface for three contrasting nights in CASES-99, J. Atmos. Sci., 63, 920-935, DOI: 10.1175/JAS3654.1.
    Stull, R. B., 1988: An Introduction to Boundary-Layer Meteorology. Kluwer Academic
    Publishers, 666 pp
    Sühring, M., B. Maronga, F. Herbort, and S. Raasch, 2014: On the effect of surface
    heat-flux heterogeneities on the mixed-layer-top entrainment. Boundary-Layer Meteorology, 151, 531-556.
    Tai, L.-H., J.-S. Hong, B.-J. Tsuang, J.-L. Tsai, and P.-J. Ni, 2008: Update of Taiwan land-use
    data in WRF model. J. Atmos. Sci., 36, 43–61.
    Wu, C.-M., and A. Arakawa, 2011: Inclusion of Surface Topography into the Vector Vorticity
    Equation Model (VVM), J. Adv. Model. Earth Syst., 3(2), n/a–n/a, doi:10.1029/2011MS000061.
    Wu, C.-M., M.-H. Lo, W.-T. Chen, and C.-T. Lu, 2015: The impacts of heterogeneous land
    surface fluxes on the diurnal cycle precipitation: A framework for improving the GCM representation of land-atmosphere interactions, J. Geophys. Res. Atmos., 120, doi:10.1002/2014JD023030.
    Xiu, A., and J. E. Pleim, 2001: Development of a land surface model. Part I: Application in a
    mesoscale meteorological model. J. Appl. Meteor., 40, 192-209.
    Yeh, H.-C., and Y.-L. Chen, 1998: Characteristics of rainfall distributions over Taiwan during
    the Taiwan Area Mesoscale Experiment (TAMEX). J. Appl. Meteor., 37, 1457-1469.
    Zängl, G., 2012: Extending the Numerical Stability Limit of Terrain-Following Coordinate
    Models over Steep Slopes. Mon. Wea. Rev., 140, 3722–3733.
    Zobler, L. 1986. A World Soil File for Global Climate Modelling. NASA Technical
    Memorandum 87802. NASA Goddard Institute for Space Studies, New York, New York, U.S.A.

    QR CODE
    :::