| 研究生: |
吳國彰 Guo-Jhang Wu |
|---|---|
| 論文名稱: |
850nm垂直共振腔面射型雷射之鈍化層改善及光電特性分析 Improvement of passivation layer and Characterization of 850 nm Vertically cavity surface-emitting lasers |
| 指導教授: |
張正陽
Jenq-Yang Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2018 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 垂直共振腔面射型雷射 、鈍化層 |
| 外文關鍵詞: | 850nm VCSEL, passivation |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中,我們以AlGaAs磊晶片製做850nm VCSEL(垂直共振腔面射型雷射) 並透過下列兩種方法降低寄生電容值來改善VCSEL之頻寬特性。第一種方法:我們用 濕蝕刻和乾蝕刻將元件結構蝕刻成高台型結構,此製程方法稱為Isolation。藉由此方法 我們能降低元件表面之寄生電容。第二種方法:在晶片外部寄生電容上,我們分別以 單層複合膜、BCB及雙層複合膜三種介質作為鈍化層(Passivation Layer)來降低電極 產生的寄生電容值。
首先,Isolation在高台型(mesa-type)結構中對元件的閥值條件、電阻影響不 大,例如:在W/O Isolation下操作電阻分別為84.25Ω(雙層複合膜)和81.7Ω(BCB) ,在W/ Isolation下操作電阻分別為87.95Ω(雙層複合膜)和88.42Ω(BCB),但電容 值部分就有明顯的下降,如:在鈍化層為BCB,電容值由0.116 pF(W/O Isolation)降 至0.069 pF(W/ Isolation),由此可得Isolation能有效的降低元件的電容值。接著,鈍 化層的材料方面,目前大部分是以BCB及Polymer兩種低介電係數(low-k)材料為主, 原因為低介電係數材料能有效的降低元件外部的寄生電容值。Polymer的介電係數為 3.3,雖然元件的電容值能有效的下降,但Polymer的缺點為製程時材料表面容易產生龜 裂,使元件的特性變差。BCB的介電係數為2.65,雖然BCB的優點為有效的降低元件的 電容值,但BCB的缺點為金屬附著力差、製程複雜及成本高。為了解決BCB和Polymer 的缺點,我們選擇使用氮化矽(Si3N4)疊加氧化矽(SiO2)形成的複合膜 (Multilayer)改善製程中Polymer材料表面容易產生龜裂和BCB金屬附著力差、製程複 雜及成本高的缺點。
在W/ Isolation的元件結構中,分別以雙層複合膜、BCB作為鈍化層並比較其操 作電阻、電容值及頻寬,雖然雙層複合膜的操作電阻、電容值略低於BCB的值,且操 作頻寬也從9.6GHz(雙層複合膜)上升至9.9GHz(BCB),但複合膜的優點為金屬附 著力佳、製程流程簡單及成本較低。由於複合膜有相近於BCB的元件特性和改善BCB 的缺點,所以厚的複合膜能取代BCB成為較好的鈍化層材料。
In this thesis, we use AlGaAs epitaxial wafer to fabricate 10GHz 850nm Vertical Cavity Surface Emitting Laser and increase modulation bandwidth by reducing parasitic capacitance. Reducing parasitic capacitance by isolation and two kind of passivation layers. The passivation layer is Benzocyclobutene (BCB) and Multilayer.
First of all, Isolation reduces capacitance value in the same passivation layer. The capacitance value is reduced from 0.116 pF (W/O Isolation) to 0.069 pF (W/Isolation) in the BCB. The capacitance value is reduced from 0.145 pF (W/O Isolation) to 0.121 pF (W/Isolation) in the Multilayer×2.
On the other hand, the passivation layer reduce capacitance value in the W/ Isolation. The capacitance value is reduced from 0.161 pF (Multilayer×1) to 0.121 pF (Multilayer×2) in the W/ Isolation. The capacitance value is reduced from 0.121 pF (Multilayer×2) to 0.069 pF (BCB) in the W/ Isolation.
In the W/ Isolation, the modulation bandwidth is increase from 9.6 GHz (Multilayer×2) to 9.9 GHz (BCB).
Although the Multilayer×2 and BCB has the similar threshold condition and modulation bandwidth, the advantages of the Multilayer×2 are good metal adhesion, simple process flow and low cost. Since the Multilayer×2 has similar element characteristics to BCB and improves the disadvantage of BCB, a thick composite film can replace BCB as a better passivation layer material.
[1] 盧佳柔,“五大應用一步到位 VCSEL成通訊/測距幕後推手”, 新通訊元件雜誌, 新通訊2月號204期, 2018
[2] https://www.moneydj.com/KMDJ/wiki/WikiViewer.aspx?Title=VCSEL
[3] https://www.asus.com/tw/ROG-Republic-Of-Gamers/ROG-Spatha/
[4] 盧佳柔,“3D感測需求加溫 VCSEL商機水漲船高”, 新通訊元件雜誌, 新通訊 6 月號 208 期, 2018
[5] https://community.fs.com/blog/active-optical-cable-aoc-rising-star-of-telecommunications-datacom-transceiver-markets.html
[6] https://www.multicominc.com/training/technical-resources/copper-vs-fiber-which-to-choose/
[7] 葉子, “有源光纜AOC市場深度解析”, 壹讀, 2015
[8] 第三章 雷射二極體, PIDA,2 001
[9] 曲建仲,iPhone X臉部解鎖的關鍵元件,科學月刊 12/2017 第576期, 2017
[10] 盧廷昌,王興宗,“半導體雷射導論”, 五南出版社,台北市, 2008
[11] 崔博婷,“耦合共振腔結構中之量子點光學特性研究”, 國立中山大學,碩士論文, 2010
[12] 鄒志偉, “光纖通訊”, 五南出版社, 台北市, 2011
[13] Donald A. Neamen,“SEMICONDUCTOR PHYSICS AND DEVICES Basic Principles”, McGraw-Hill , Fourth Edition, 2012
[14] B. E. Deal and A. S. Grove, “General Relationship for the Thermal Oxidation of Silicon,” J. Appl. Phys., 1965.
[15] Kent D. Choquette, Kent M. Geib, Carol I. H. Ashby, Ray D. Twesten, Olga Blum, Hong Q. Hou, David M. Follstaedt, B. Eugene Hammons, Dave Mathes, and Robert Hull ,“Advances in Selective Wet Oxidation of AlGaAs Alloys ”, IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1997
[16] Noriyuki OHNOKI, Nobuaki HATORI, Akimasa MIZUTANI, Fumio KOYAMA and Kenichi IGA, “GaInAs /AlGaInAs Semiconductor Lasers with AlAs Oxide Current Confinement Structure”, Jpn. J. Appl. Phys., 1997
[17] M. Ochiai et al., Appl. Phys. Lett., 68, 1898.
[18] Noriyuki OHNOKI, Toshikazu MUKAIHARA, Nobuaki HATORI, Akimasa MIZUTANI, Fumio KOYAMA and Kenichi IGA, “Proposal and Demonstration of AlAs-Oxide Confinement Structure for InP-Based Long Wavelength Lasers”, Jpn. J. Appl. Phys. , 1997
[19] Kent D. Choquette, K. L. Lear, R. P. Schneider, Jr., K. M. Geib, J. J. Figiel, and Robert Hull, “Fabrication and Performance of Selectively oxidized Vertical-Cavity Lasers” Photon. Tech. Lett. 7, 1995.
[20] N. Hplonyak, Jr., and J. M. Dallesasse, USA Patent #5,262,360
[21] K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, T. J.Drummond, and R. Hull, “Selective oxidation of buried AlGaAs versusAlAs layers,” Appl. Phys. Lett. 69, 1996.
[22] K. L. Lear, R. P. Schneidner, Jr., K. D. Choquette, and S. P. Kilcoyne, “Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,” IEEE Photon. Technol. Lett., 1996.
[23] D. L. Huffaker, J. Shin, and D. G. Deppe, “Lasing characteristics of low threshold microcavity lasers using half-wave spacer layers and lateral index confinement.” Appl. Phys. Lett., 1995
[24] K. D. Choquette, K. L. Lear, R. P. Schneider, Jr.,and K. M. Geib,”Cavity characteristics of selectively oxidized vertical-cavity lasers,”Appl. Phys. Lett., 1995.
[25] 彭红玲, 韩 勤, 杨晓红, 牛智川 ,“1.3µm量子点垂直腔面发射激光器高频响应的优化设计 ”, 物理学报 , 2007
[26] Anders Larsson, Petter Westbergh, Johan Gustavsson, A ̊ sa Haglund and Benjamin Ko ̈gel, “High-speed VCSELs for short reach communication”, Semicond. Sci. Technol., 2010
[27] A N AL-Omari, I K AL-Kofahi and K L Lear, “Fabrication, performance and parasitic parameter extraction of 850 nm high-speed vertical-cavity lasers ”, Semicond. Sci. Technol., 2009
[28] W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann,“10-Gb/s Data Transmission Using BCB Passivated 1.55-m InGaAlAs–InP VCSELs”, IEEE PHOTONICS TECHNOLOGY LETTERS, 2006
[29] Philip Moser ,“Energy-Efficient VCSELs for Optical Interconnects ”, Springer International Publishing, Switzerland, 2016
[30] Rainer Michalzik, “VCSELs :Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers ,”Springer-Verlag Berlin Heidelberg, 2013
[31] K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,”IEEE J. Quantum Electron., 1988.
[32] Y H Chang, Fang-I Lai, C Y Lu, H C Kuo, H C Yu, C P Sung, H P Yang and S C Wang, “High-speed (>10 Gbps) 850 nm oxide-confined vertical cavity surface emitting lasers (VCSELs) with a planar process and reduced parasitic capacitance “,Semicond. Sci. Technol., 2004
[33] PAULINA KOMAR1, PATRYCJA ŚPIEWAK, MARCIN GĘBSKI, JAMES A. LOTT, MICHAŁ WASIAK, “CURRENT DEPENDENCE OF RESISTANCES AND CAPACITANCES IN A VERTICAL-CAVITY SURFACE-EMITTING LASER”, SCIENTIFIC BULLETIN OF THE LODZ UNIVERSITY OF TECHNOLOGY: Physics, 2017
[34] Y. Ou, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Impedance Characteristics and Parasitic Speed Limitations of High-Speed 850-nm VCSELs”, IEEE PHOTONICS TECHNOLOGY LETTERS, 2009
[35] Silvia Spiga, Dean Schoke, Alexander Andrejew, Gerhard Boehm, and Markus-Christian Amann,“Effect of Cavity Length, Strain, and Mesa Capacitance on 1.5µm VCSELs Performance,” IEEE,JOURNAL OF LIGHTWAVE TECHNOLOGY, 2017
[36] H.K. Lee, Y.M. Song, Y.T. Lee, J.S. Yu, “Thermal analysis of asymmetric intracavity-contacted oxide-aperture VCSELs for efficient heat dissipation”, ScienceDirect, 2009
[37] WSTan,P AHouston, PJParbrook, GHill and RJAirey, “Comparison of different surface passivation dielectrics in AlGaN/GaN heterostructure field-effect transistors”, IOP, 2002
[38] Jung-Hun Oh, Woo-Suk Sul, Jin-Koo Rhee, and Sam-Dong Kim, “Influence of Silicon Nitride Passivation on DC and RF Characteristics of 0.1 m Pseudomorphic HEMTs ”, Journal of The Electrochemical Society, 2005
[39] A. N. AL-Omari, K. L. Lear, “Polyimide-Planarized Vertical-Cavity Surface-Emitting Lasers With 17.0-GHz Bandwidth”, IEEE PHOTONICS TECHNOLOGY LETTERS, 2004
[40] Tatsuya Tanigawa, Toshikazu Onishi, Shuichi Nagai, and Tetsuzo Ueda,“12.5-Gbps Operation of 850-nm Vertical-Cavity Surface-Emitting Lasers With Reduced Parasitic Capacitance by BCB Planarization Technique ,”IEEE JOURNAL OF QUANTUM ELECTRONICS, 2006
[41] 李世平,“電漿化學氣相沉積技術成長超低應力之紫外光可透性氮化矽薄膜”, 國立交通大學, 碩士論文, 2010
[42] K. D. Mackenzie, B. Reelfs, M. W. DeVre, R. Westerman, and D. J. Johnson, "Characterization & Optimization of Low Stress PECVD Silicon Nitride for Production GaAs Manufacturing”, Compound Semi & Microtechnology, 2004
[43] C.L. Tan, S.J. Jang, Y.T. Lee,“Si3N4 / SiO2 Passivation Layer on InP for Optimization of the 1.55 μm MQW FP laser Performance ,”IEEE, 2009
[44] X. Hu, A. Koudymov, G. Simin, J. Yang, M. Asif Khan, A. Tarakji, M. S. Shur, and R. Gaska,“Si3N4 / AlGaN /GaN–metal–insulator–semiconductor heterostructure field–effect transistors”, APPLIED PHYSICS LETTERS , 2001
[45] SIMON FERRÉ, ALBA PEINADO, ENRIC GARCIA-CAUREL, VIRGINIE TRINITÉ, MATHIEU CARRAS, AND ROBSON FERREIRA, “Comparative study of SiO2, Si3N4 and TiO2 thin films as passivation layers for quantum cascade lasers ”, OPTICS EXPRESS, 2016
[46] Weng W. Chow, Kent D. Choquette, Mary H. Crawford, Kevin L. Lear, and G. Ronald Hadley, “Design, Fabrication, and Performance of Infrared and Visible Vertical-Cavity Surface-Emitting Lasers,” IEEE J. Quantum Electron., 1997.
[47] C. C. Chen, S. J. Liaw, and Y. J. Yang, “Stable Single-Mode Operation of an 850-nm VCSEL with a Higher Order Mode Absorber Formed by Shallow Zn Diffusion”, IEEE PHOTONICS TECHNOLOGY LETTERS, 2001
[48] http://www.litrax.com.tw/upload/APA4401xy0001.pdf