| 研究生: |
莊榮瀚 Rong-han Zhuang |
|---|---|
| 論文名稱: |
太陽追蹤器之設計與測試 Design and Test of the Solar Tracker |
| 指導教授: |
吳俊諆
Jiunn-chi Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 高聚光太陽能技術 、太陽追蹤器 、機構設計 |
| 外文關鍵詞: | HCPV, solar tracker, mechanism design |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
太陽光電系統近年來的發展蓬勃,如何降低成本與提高太陽電池效率一直是研究人員的重點。在不同的太陽光電技術中,尤其是高聚光型太陽光電系統(high concentrated photovoltaic, HCPV)搭配高功率的三五族太陽電池,在未來十年有相當潛力降低太陽光電的發電成本。三五族太陽電池僅能吸收直射的太陽日照,因此需要以高精度的太陽追蹤器對太陽做即時追蹤。
本研究為設計一實驗型太陽追蹤器,並利用被動式追蹤系統進行戶外實測。文中介紹太陽光電系統,特別強調HCPV與搭配高精度太陽追蹤器的需要,並敘述追蹤器的設計過程,最後討論此追蹤器在戶外測試與調校方法和實驗結果。
本文設計的追蹤器為方位角-仰角雙軸運動方式,利用齒輪減速機構達到375倍的減速比。追日方式以電腦計算太陽軌跡,並利用步進馬達來驅動齒輪組,以達成高精度控制的目的。本文運用Pro-E軟體進行機構設計,追蹤器可負重30 kg的太陽電池模組;方位角轉動範圍達±120°、仰角轉對範圍則是0°-90°。
追蹤器在戶外測試前,需用水平儀進行水平方向的定位,再利用指南針進行正南方的定位。本文利用精度為0.1°的視準管為角度測量器材,並利用數位相機記錄投射在視準管內的太陽光點影像,再以人為判讀偏差角度。實驗數據顯示此太陽追蹤器搭配被動式追蹤系統的平均追蹤偏差角小於0.31°,最高偏差角也在0.6°以內,大致符合原先設計追蹤器的設計目標(精度小於1o)。因此本文的追蹤器說明被動式追蹤器可搭配接受角為1°的HCPV的聚光模組,對日後設計大型高精度的太陽追蹤器有相當參考價值。
Increasing the solar cell’s efficiency while reducing the cost of solar cell is the main focus of the research of photovoltaics technology. High concentrated photovoltaic (HCPV) system uses III-V solar cell, have a great potential of reducing the cost of electricity power in next ten years. However, the III-V solar cell only absorb the direct solar irradiation and it needs to be mounted on a solar tracker with high accuracy.
In this study, an experimental solar tracker is designed and tested its passive tracking performance at outdoor. The general requirement of photovoltaics system is introduced first and the necessity of high accuracy of solar tracker is highlighted for coping with HCPV. Next, the process of mechanism design with the Pro-E software is described. This tracker can support a solar panel with 30 kg, and rotate with the range of azimuth and altitude ±120° and 0°-90°, respectively.
Calibrating procedure in the horizontal position and south-north orientation is performed before the outdoors test. Then a collimating tube with 0.1° precision is used to measure the off-tracking angle. Result shows that the average off-tracking angle is about 0.31° and maximum off-tracking angle is about 0.6°. This demonstrates the feasibility of the passive sun tracker can be used in HCPV system with an optical module of 1° acceptance angle.
1. 台灣中油股份有限公司 http://www.cpc.com.tw/big5/home/index.asp
2. R. A. Hinrichs, M. H. Kleinbach, Energy: Its Use and the Environment, 4th Ed., Brooks Cole, 2006.
3. 英國石油公司統計數據 http://www.bp.com/statisticalreview
4. 蔡進譯,超高效率太陽電池-從愛因斯坦的光電效應談起,物理雙月刊,二十七卷五期,p.701-719, 2005.
5. 美國國家再生能源中心NREL http://www.nrel.org
6. 太陽光電資訊網 http://solarpv.itri.org.tw/aboutus/sense/component.asp
7. 日本三洋公司SANYO http://www.sanyo.com
8. A. Royne, C. J. Dey, D. R. Mills, “Cooling of PV Cells Under Concentrated Illumination: a Critical Review,” Solar Energy Materials & Solar Cells, vol. 86, p. 451-483, 2005.
9. N. H. Karam, R. A. Sheruf, R. R. King, “Multijiunction Solar Cells: An Enaler for Low-Cost Photovoltaic Systems,” Concentrator Photovoltaics, Chapter 10, Springer-Verlag Berlin Heidelberg, 2007.
10. A. Luque1, G. Sala, I. Luque-Heredia, “Photovoltaic Concentration at the Onset of its Commercial Deployment,” Progress in Photovoltaics: Research and Applications, vol. 14 p. 413-428, 2006.
11. H. S. Lee, N. J. Ekins-Daukes, K. Araki, Y. Kemmoku, M. Yamaguchi, “Field Test and Analysis: The Behavior of 3-J Concentrator Cells Under The Control of Cell Temperature,” 31st IEEE Photovoltaic Specialists Conference and Exhibition, 2005.
12. Y. Kemmoku, T. Egami, M. Hiramatsu, Y. Miyazaki, K. Araki, N. J. Ekins-Daukes, T. Sakakibara, “Modeling of Module Temperature of a Concentrator PV System,” 19th European Photovoltaic Solar Energy Conference and Exhibition, 2004.
13. Sarah Kurtz, Generation X Photovoltaics, World Renewable Energy Congress, 2004.
14. C. Algora, “Very-High-Concentration Challenges of Ⅲ-Ⅴ Multijiunction Solar Cells,” Concentrator Photovoltaics, Chapter 5, Springer-Verlag Berlin Heidelberg, 2007.
15. A. W. Bett, F. Dimroth, G. Siefer, “Multijunction Concentrator Solar Cells,” Concentrator Photovoltaics, Chapter 4, Springer-Verlag Berlin Heidelberg, 2007.
16. M. Yamaguchi, T. Takamoto, K. Arahi, “Multi-junction Ⅲ-Ⅴ Solar Cells: Current Status and Future Potential,” Solar Energy, vol. 79, p. 78-85, 2005.
17. C-Rating project http://www.ies-def.upm.es/ies/CRATING/crating.htm
18. G. Sala, D. Pachon, I. Anton, E. Caamano, W. Warta, G. Siefer, R. Kenny, R. Kern, F. P. Spiess, A. Linares, “Conclusions and Proposals,” Chapter 2, in Test, Rating and Specification of PV Concentrator Components and Syatems, C-Rating project (Conctract: NNE-1999-0588), 2002.
19. J. C. Arboiro, G. Sala, “Self-learning Tracking: a New Control Strategy for PV Concentrators,” Progress in Photovoltaics: Research and Applications, vol. 5, p. 213-226, 1997.
20. C. Sierra, A. J. Vazquez, “High Solar Energy Concentration With a Fresnel Lens,” J. Materials Science, vol. 20, p. 1339-1343, 2005.
21. K. Araki, M. Kondo, H. Uozumi, Y. Kemmoku, T. Egami, M. Hiramatsu, Y. Miyazaki, N. J. Ekins-Daukes, M. Yamaguchi, G. Siefer, A. W. Bett, “A 28% Efficient, 400× and 200WP Concentrator Module,” 19th European Photovoltaic Solar Energy Conference and Exhibition, 2004.
22. M. J. O’Neill, A. J. McDanal, P. A. Jaster, “Development of Terrestrial Concentrator Modules Using High-Efficiency Multi-Junction Solar Cells,” 29th IEEE Photovoltaic Specialists Conference, 2002.
23. K. Araki, H. Uozumi, M. Yamaguchi, Y. Kemmoku, “Development of a New 550× Concentrator Module with 3J Cells - Performance and Reliability,” 15th Inter. Photovoltaic Science & Engineering Conference, 2005.
24. I. Anton, G. Sala, “Losses Caused by Dispersion of Optical Parameters and Misalignments in PV Concentrators,” Progress in Photovoltaics: Research and Applications, vol. 13, p. 341-352, 2005.
25. L. Fraas, J. Avery, H. Huang, L.Minkin, E. Shifman, “Demonstration of a 33% Efficient Cassegrainian Solar Module,” IEEE 4th World Conference on Photovoltaic Energy Conversion, 2006.
26. L. Fraas, J. Avery, L. Minkin, E. Shifman, “Possible Improvements in the Cassegrainian PV Module,” 4th Inter. Conf. on Solar Concentrators for the Generation of Electricity or Hydrogen, 2007.
27. A. Luque, S. Hegedus, Handbook of Photovoltaic Science and Engineering, John Wiley & Sons, 2003.
28. V. Poulek, M. Libra, “A Very Simple Solar Tracker for Space and Terrestrial Applications,” Solar Energy Materials & Solar Cells, vol. 60, p. 99-103, 2000.
29. U.S. patent No. 2913583, 1954.
30. U.S. patent No. 4649899, 1987.
31. F. Dobón, J. Monedero, P. Valera, L. Acosta, G. N. Marichal, R. Osuna, V. Fernández, “Two Axis Sun Tracking Systems: Tetra-Track,” 17th European Photovoltaic Solar Energy Conference, 2001.
32. Y. Kemmoku, T. Egami, Y. Miyazaki, M. Hiramatsu, K. Araki, N. J. Ekins-Daukes, H. S. Lee, T. Sakakibara, “Field Test of a 500× Concentrator PV System with Dome Fresnel Lens,” 20th European Photovoltaic Solar Energy Conference & Exhibition, 2005.
33. J.A. Duffie, W. A. Beckmen, Solar Engineering of Thermal Process, John Wiley & Sons, 1980.
34. Y. T. Chen, B. H. Lim, C. S. Lim, “General Sun Tracking Formula for Heliostats with Arbitrarily Oriented Axes,” J. Solar Energy Eng., vol. 128, p. 245-250, 2006.
35. T. Markvart, Solar Electricity, John Wiley & Sons, 2000.
36. D. L. Beshears, G. J. Capps, D. D. Earl, J. K. Jordan, L. C. Maxey, J. D. Muhs, “Tracking Systems Evaluation for the Hybrid Lighting System,” 2003 Inter. Solar Energy Conference, p. 37-40, 2003.
37. J. Beltrán A., J. L. González Rubio S. y C. D. García-Beltrán, “Design, Manufacturing and Performance Test of a Solar Tracker Made by a Embedded Control,” Fourth Congress of Electronics, Robotics and Automotive Mechanics, p. 129-134, IEEE, 2007.
38. 黃浩民,葉宏易,李政達,高精度太陽光追蹤控制器研發,行政院核能研究所96年度研發成果說明會,p. 253-261,民國96年。
39. S. Cowley, S. Horne, S. Jensen, R. MacDonald, “Acceptance Angle Requirements for Point Focus CPV Systems,” 4th Inter. Conf. on Solar Concentrators for the Generation of Electricity or Hydrogen, 2007.
40. A. W. Bett, H. Lerchenmuller, “The FLATCON System from Concentrix Solar,” Concentrator Photovoltaics, Chapter 14, Springer-Verlag Berlin Heidelberg, 2007.
41. A. M. Sharan, “Determination of Bearing Loads due to Wind in Solar Tracking Systems,” J. Solar Energy Eng., vol. 126, p.668-670, 2004.
42. I. Luque-Heredia, J. M. Moreno, P. H. Magalhaes, R. Cervantes, G. Quemere, O. Laurent, “Inspira’s CPV Sun Tracking,” Concentrator Photovoltaics, Chapter 11, Springer-Verlag Berlin Heidelberg, 2007.
43. F. M. Al-Naima, “Design and Construction of a Solar Tracking System,” Solar & Wind Technology, vol. 7, p.611-617, 1990.
44. Dobon’s Technology http://www.dobontech.com/
45. Parametric Technology Corporation http://www.ptc.com
46. Feina http://www.tracker.cat/fra/seguidor-concentracio-fotovoltaica.htm
47. 小栗富士雄,小栗達男,機械設計圖表便覽,臺隆書局,民國92年。
48. 東野精機公司 http://www.efctw.com
49. 張智凱,被動式太陽追蹤器之追控系統開發,國立中央大學機械系碩士論文,民國97年。
50. KHK公司 http://www.amx.com.tw
51. WATTSUN公司 http://www.wattsun.com
52. SKF公司 http://www.skf.com
53. 台達電子工業股份有限公司 http://www.delta.com.tw/ch/index.asp