| 研究生: |
紀堡鐘 Bao-Chung Chi |
|---|---|
| 論文名稱: |
單晶銅成長石墨烯及其可撓性之研究 Research of the graphene growth on single crystal copper and its flexibility |
| 指導教授: |
郭倩丞
Chien-Cheng Kuo 陳昇暉 Sheng-Hui Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 石墨烯 、化學氣相沉積法 |
| 外文關鍵詞: | graphene, CVD |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石墨烯具有高電子遷移率、高導電性、高穿透性、高機械強度,利用於電子元件製備與透明導電膜研究上受到重視。目前大多使用多晶銅箔利用化學氣相沉積法來製備高品質石墨烯,而不同晶向之銅表面與石墨烯之晶格匹配度不一致,所生長石墨烯單晶會產生不同方向性,導致晶界接合處產生較大接合缺陷,阻礙了電子的傳導,並降低其導電特性。
本研究利用化學電鍍剝離法製備表面為銅(111)之銅箔,並利用化學氣相沉積法成長石墨烯,透過製備單一晶向銅箔,降低晶格匹配度所造成之缺陷來成長單一方向性之石墨烯單晶,減少邊界接合缺陷產生,並與目前化學氣相沉積法於多晶銅箔之表面形貌、片電阻、載子遷移率、光穿透率、拉曼訊號比較,證實有較佳之品質。並運用此方法製備石墨烯並轉移至軟性基板上,並進行撓曲度量測,驗證石墨烯比起現今透明導電膜有較佳之可撓性,使其能運用取代現今之透明導電薄膜。
Graphene is a two-dimensional material composed of carbon atoms arranged in a hexagonal atomic structure. Its advantages are very good transparency, conductivity, excellent mechanical properties and it can be bent arbitrarily. So it achieve a lot of attractions on the applications of the electronic element and the transparent conductive film researches. Many of high quality graphene processes are developed by chemical vapor deposition. However, the grain boundary defects occurred when graphene synthesized on the polycrystalline Cu foil. The polycrystalline Cu grains lead to the different orientation of graphene domains owing to the lattice constant mismatch.
In this study, the Cu (111) foil has been fabricated by the peel-off method. The graphene domains with a consistency of orientation were synthesized on the single crystal Cu (111) thin film by chemical vapor deposition. And the measurements are including sheet resistance, mobility, transmittance, Raman shift and prove the graphene has better quality. Then flexibility measurements has been applied. It shows a remarkable flexibility to compare with the flexible transparent conductive film (ITO).
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666-669, Oct 22, 2004.
[2] K. I. Bolotina, K. J. Sikes, Z. Jiang, M. Klimac, G. Fudenberga, J. Honec, P. Kima, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Communications, vol. 146, pp. 351-355, 2008.
[3] A. K. Geim, and K. S. Novoselov, “The rise of graphene,” Nature Materials, vol. 6, no. 3, pp. 183-191, Mar, 2007.
[4] R. Murali, Y. Yang, K. Brenner, T. Beck, and J. D. Meindl, “Breakdown current density of graphene nanoribbons,” Applied Physics Letters, vol. 94, no. 24, Jun 15, 2009.
[5] C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science, vol. 321, no. 5887, pp. 385-388, Jul 18, 2008.
[6] G. Jo, M. Choe, S. Lee, W. Park, Y. H. Kahng, and T. Lee, “The application of graphene as electrodes in electrical and optical devices,” Nanotechnology, vol. 23, no. 11, Mar 23, 2012.
[7] L. Colombo, X. Li, B. Han, C. Magnuson, W. Cai, Y. Zhu, and R. S. Ruoff, “Growth kinetics and defects of CVD graphene on Cu,” ECS Transactions, vol. 28, no. 5, pp. 109-114, 2010.
[8] L. Gao, J. R. Guest, and N. P. Guisinger, “Epitaxial Graphene on Cu(111),” Nano Letters, vol. 10, no. 9, pp. 3512-3516, Sep, 2010.
[9] K. Novoselov, A. K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, and A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” nature, vol. 438, no. 7065, pp. 197-200, 2005.
[10] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry's phase in graphene,” Nature, vol. 438, no. 7065, pp. 201-204, 2005.
[11] 林永昌, 鄭碩方, 邱博文, "石墨烯之電子能帶特性與其元件應用," 2011].
[12] S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejon, “Tight-binding description of graphene,” Physical Review B, vol. 66, no. 3, pp. 035412, 2002.
[13] E. Y. Andrei, G. Li, and X. Du, “Electronic properties of graphene: a perspective from scanning tunneling microscopy and magneto-transport,” arXiv preprint arXiv:1204.4532, 2012.
[14] R. Nair, P. Blake, A. Grigorenko, K. Novoselov, T. Booth, T. Stauber, N. Peres, and A. Geim, “Fine structure constant defines visual transparency of graphene,” Science, vol. 320, no. 5881, pp. 1308-1308, 2008.
[15] K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. a. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” science, vol. 306, no. 5696, pp. 666-669, 2004.
[16] S. Roddaro, P. Pingue, V. Piazza, V. Pellegrini, and F. Beltram, “The optical visibility of graphene: Interference colors of ultrathin graphite on SiO2,” Nano letters, vol. 7, no. 9, pp. 2707-2710, 2007.
[17] W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M. L. Sadowski, M. Potemski, and G. Martinez, “Epitaxial graphene,” Solid State Communications, vol. 143, no. 1-2, pp. 92-100, Jul, 2007.
[18] X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, “Highly conducting graphene sheets and Langmuir–Blodgett films,” Nature nanotechnology, vol. 3, no. 9, pp. 538-542, 2008.
[19] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S.-S. Pei, “Graphene segregated on Ni surfaces and transferred to insulators,” Applied Physics Letters, vol. 93, no. 11, pp. 113103, 2008.
[20] H. Ago, Y. Ogawa, M. Tsuji, S. Mizuno, and H. Hibino, “Catalytic growth of graphene: toward large-area single-crystalline graphene,” The Journal of Physical Chemistry Letters, vol. 3, no. 16, pp. 2228-2236, 2012.
[21] K. A. Ritter, and J. W. Lyding, “The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons,” Nature materials, vol. 8, no. 3, pp. 235-242, 2009.
[22] Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. Bao, S.-S. Pei, and Y. P. Chen, “Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition,” Nature Materials, vol. 10, no. 6, pp. 443-449, Jun, 2011.
[23] Y. Ogawa, B. Hu, C. M. Orofeo, M. Tsuji, K.-i. Ikeda, S. Mizuno, H. Hibino, and H. Ago, “Domain structure and boundary in single-layer graphene grown on Cu (111) and Cu (100) films,” The Journal of Physical Chemistry Letters, vol. 3, no. 2, pp. 219-226, 2012.
[24] H.-J. Shin, S.-M. Yoon, W. M. Choi, S. Park, D. Lee, I. Y. Song, Y. S. Woo, and J.-Y. Choi, “Influence of Cu crystallographic orientation on electron transport in graphene,” Applied Physics Letters, vol. 102, no. 16, Apr 22, 2013.
[25] L. Gomez De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. Zhou, “Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics,” ACS nano, vol. 4, no. 5, pp. 2865-2873, 2010.
[26] 楊明輝, "透明導電膜," 2006.
[27] S.-W. Cho, J.-A. Jeong, J.-H. Bae, J.-M. Moon, K.-H. Choi, S. W. Jeong, N.-J. Park, J.-J. Kim, S. H. Lee, and J.-W. Kang, “Highly flexible, transparent, and low resistance indium zinc oxide–Ag–indium zinc oxide multilayer anode on polyethylene terephthalate substrate for flexible organic light light-emitting diodes,” Thin Solid Films, vol. 516, no. 21, pp. 7881-7885, 2008.
[28] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature, vol. 457, no. 7230, pp. 706-710, 2009.
[29] X.-W. Fu, Z.-M. Liao, J.-X. Zhou, Y.-B. Zhou, H.-C. Wu, R. Zhang, G. Jing, J. Xu, X. Wu, and W. Guo, “Strain dependent resistance in chemical vapor deposition grown graphene,” Applied Physics Letters, vol. 99, no. 21, pp. 213107, 2011.
[30] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, and Y. I. Song, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nature nanotechnology, vol. 5, no. 8, pp. 574-578, 2010.
[31] H. Bi, F. Huang, J. Liang, X. Xie, and M. Jiang, “Transparent conductive graphene films synthesized by ambient pressure chemical vapor deposition used as the front electrode of CdTe solar cells,” Advanced Materials, vol. 23, no. 28, pp. 3202-3206, 2011.
[32] H. K. Yu, K. Balasubramanian, K. Kim, J.-L. Lee, M. Maiti, C. Ropers, J. Krieg, K. Kern, and A. M. Wodtke, “Chemical Vapor Deposition of Graphene on a “Peeled-Off” Epitaxial Cu (111) Foil: A Simple Approach to Improved Properties,” ACS nano, vol. 8, no. 8, pp. 8636-8643, 2014.
[33] "Raman spectroscopy." Wikipedia.
[34] A. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselov, and S. Roth, “Raman spectrum of graphene and graphene layers,” Physical review letters, vol. 97, no. 18, pp. 187401, 2006.
[35] J.-Y. Hwang, C.-C. Kuo, L.-C. Chen, and K.-H. Chen, “Correlating defect density with carrier mobility in large-scaled graphene films: Raman spectral signatures for the estimation of defect density,” Nanotechnology, vol. 21, no. 46, pp. 465705, 2010.
[36] W. Wu, Q. Yu, P. Peng, Z. Liu, J. Bao, and S.-S. Pei, “Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes,” Nanotechnology, vol. 23, no. 3, pp. 035603, 2012.
[37] 黃宏勝、林麗娟, “FE-SEM/CL/EBSD 分析技術,” 工業材料雜誌, vol. 201, 2003.
[38] 朱彥霖, “單晶相石墨烯製備與特性分析,” 中央大學光電科學與工程學系碩士論文, 2014.
[39] Z. Luo, Y. Lu, D. W. Singer, M. E. Berck, L. A. Somers, B. R. Goldsmith, and A. C. Johnson, “Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure,” Chemistry of Materials, vol. 23, no. 6, pp. 1441-1447, 2011.
[40] I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, and S. Smirnov, “Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene,” Acs Nano, vol. 5, no. 7, pp. 6069-6076, 2011.
[41] X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, “High efficiency graphene solar cells by chemical doping,” Nano letters, vol. 12, no. 6, pp. 2745-2750, 2012.