跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳欣
Hsin Chen
論文名稱: 零自旋之動力聯絡的宇宙學探討
Some Cosmological Explorations of Dynamical Connection Modes of Spin-0
指導教授: 聶斯特
James M. Nester
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 100
語文別: 英文
論文頁數: 78
中文關鍵詞: 宇宙學波因卡瑞規範理論自旋密度拉格朗日
外文關鍵詞: Spin Density, Bianchi Cosmology, Effective Lagrangian, Poincar''e Gauge Theory
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在重力的波因卡瑞規範理論中僅存的兩種行為良好的動力聯絡模式
    分別為:spin-0+ 及spin-0-。 我們分別在兩種宇宙模型之下研究
    此兩種模式的動力特性。這兩種動態純量的扭稱模式所產生的效應
    可以用來解釋加速膨脹宇宙的現象。我們經由數值模擬的方式檢驗
    在近期漸進的範圍內的動力演化(近似對應到目前的宇宙); 在此
    案例中顯現出兩種動力扭稱模式為分立的,而宇宙加速膨脹的現象
    僅由spin-0+ 模式所決定。目前有一更一般化的BHN模型被提出探
    討。我們也研究了明顯各向同性的Bianchi 宇宙模型。我們也研究
    了A類第一及第九型與B類第五型的動力方程式,可以顯示出等效
    的拉格朗日量與漢米爾頓量可以良好的運作。我們也重新審視物質
    自旋密度在扭稱宇宙學中所扮演的角色,我們認為自旋密度並沒有
    直接驅動此種動力純量模式。


    In the Poincar''e gauge theory of gravity only two modes with well behaved dynamics have been found. They are effectively scalar modes, carrying spin-0+and spin-0-. We have investigated the dynamics of these modes in some cosmological models.
    The effects these two
    dynamic scalar torsion could account for the presently
    accelerating universe. We had examined via numerical simulation the late time
    asymptotic regime of the dynamical evolution (approximately corresponding to our current Universe); in that case
    it turns out that the two dynamic torsion modes decouple, and the acceleration of the
    Universe is determined only by the spin-0+ mode.
    Now a more general ansatz in the framework of
    BHN PG model has been proposed. Rather than use a FLRW representation we have used a manifestly homogeneous Bianchi representation. The effective Lagrangian and Hamiltonian
    form of the dynamic equations for this model has been found for the isotropic Bianchi class A (type I, IX) and class B (type V) cosmologies.
    The role of the material spin density in torsion cosmology has been reconsidered,
    we argue that that the spin density does not directly drive the dynamic scalar modes.

    Ch1 Introduction 1 Ch2 Poincar''e Gauge Theory of Gravity 6 Ch3 Torsion Cosmology 15 Ch4 Effective Lagrangian and Hamiltonian Analysis of Homogeneous Cosmologies 25 Ch5 Spin Density and Spin Fluid 39 Ch6 Some Numerical Results 43 Ch7 Discussion and conclusion 51 Appendix 60 bibliography 63

    H.~Goldstein, C.Poole and J.Safko, {Classical Mechanics}, 3rd Edition (San Francisco: Addison Wesley, 2001).
    K.~Hayashi and T.~Shirafuji, PRD 19 (1979) 3524.
    F.W.Hehl, P.von der Heyde, G.~D.~Kerlick and J.M.Nester, Review of Modern Physics 48 (1976) 393.
    J.M.Nester, Gravity, torsion and Gauge theory,
    in it Introduction to Kaluza-Klein theories, ed H.C. Lee (World
    Scientific, Singapore, 1984), pp 83--115.
    F.W.Hehl: Four lectures on Poincare gauge theory,
    in: Proc. of the 6th Course of the School of Cosmology
    and Gravitation on it Spin, Torsion, Rotation, and Supergravity,
    held at Erice, Italy, May 1979, P.G. Bergmann, V. de Sabbata,
    eds. (Plenum, New York 1980) pp. 5--61
    F.W.Hehl in Proc. of 6th Course of the International School
    of Cosmology and Gravitation on Spin, Torsion and Supergravity,
    eds. P.G. Bergmann and V. de Sabbata (New York: Plenum, 1980), p.5.
    K.Hayashi and T.~Shirafuji, Prog. Theor. Phys. 64 (1980) 866,
    883, 1435, 2222.
    E.W.Mielke, Geometrodynamics of Gauge Fields,
    (Berlin: Akademie-Verlag, 1987).
    F.W.~Hehl, J.D.McCrea, E.W.Mielke and Y.~Neeman, Phys. Rep.
    258 (1995) 1.
    F.~Gronwald and F.~W.~Hehl, On the Gauge Aspects of Gravity, in
    Proc. 14th Course of the School of Gravitation and Cosmology (Erice)
    , eds. P.G. Bergmann, V. de Sabbata, and H.J. Treder (Singapore: World
    Scientific, 1996), p.~148--98.
    M.Blagojevic, Gravitation and Gauge Symmetries,
    (Bristol: Institute of Physics, 2002).
    E.Sezgin and P.vanNieuwenhuizen, Physical Review D 21 (1980) 3269.
    M.Blagojevi''c and I.A.~Nicolic, Physical Review D 28 (1983) 2455.
    J.Lemke, Phys. Lett. 143A, 13 (1990).
    R.D.Hecht, J.Lemke, and R.P.Wallner, Phys. Lett. 151A, 12 (1990);
    R.Hecht, J.M.Nester and V.V.~Zhytnikov, Physics Letter A 222 (1996) 37.
    H.J.Yo and J.M.Nester, J. Mod. Phys.D 8 (1999) 459.
    H.J.Yo and J.M.Nester,Int. J. Mod.Phys.D 11 (2002) 747.
    H.Chen, J.M.Nester and H.J.Yo, Acta Phys. Pol.B 29 (1998) 961.
    S.M.Carroll and G.B.Field, Physical Review D 50 (1994) 3867.
    A.S.Belyaev and I.L.Shapiro, Nucl. Phys. 543 (1999) 20.
    W.Kopczcyn}ski, Physics Letter A (1972) 39 219;
    J.A.Isenberg and J.M.~Nester, Physical Review D 15 (1977) 2078.
    I.L.Shapiro, Phys. Rep. 357 (2002) 113.
    A.G.~Riess et al., Astron.J. 116 (1998) 1009.
    S.Perlmutter et al., Astrophys. J.517 (1999) 565.
    P.J.E.Peebles and B.Ratra Review of Modern Physics 75 (2003) 559.
    T.Padmanabhan, Phys. Rep. 380 (2003) 235.
    E.J.Copeland, M.Sami and S.Tsujikawa,
    Int. J. Mod. Phys. D 15 (2006) 1753.
    R.R.Caldwell, R.Dave and P.J.Steinhardt, Physical Review Letter 80 (1998) 1582.
    S.M.Carroll, Physical Review Letter 81 (1998) 3067.
    K.R.S.Balaji and R.H.Brandenberger, Physical Review Letter 94 (2005) 031301.
    A.V.Minkevich, Physics Letter A 80 (1980) 232.
    A.V.Minkevich, Physics Letter A 95 (1983) 422.
    H. Goenner and F. Muller Hoissen, Classical Quantum Gravity 1 (1984) 651.
    H.J.Yo and J.M.Nester, Mod. Phys. Lett. A 22 (2007) 2057.
    K.F.Shie, J.M.Nester and H.J.Yo, Physical Review D 78 (2008) 023522.
    H.Chen, F.H.Ho, J.M.Nester, C.H.Wang and HJ.Yo, J. Cosmol. Astropart. Phys. JCAP10 (2009) 027.
    P.Baekler, F.W.Hehl and J.M.~Nester, Physical Review D 83 (2011) 024001.
    F.H.Ho and J.M.~Nester, Poincare gauge theory with even and odd parity dynamic connection modes:
    isotropic Bianchi cosmological models, J. Phys.: Conf.Ser., 330 (2011) 012005,
    F.H.Ho and J.M.Nester, Poincare gauge theory with coupled even and odd parity dynamic spin-0 modes:
    dynamical equations for isotropic Bianchi cosmologies, Int. J. Mod. Phys.D 20 (2011) 2125.
    R.Utiyama, Phys. Rev. 101 (1956) 1597.
    J.D.McCrea, Irreducible decompositions
    of non-metricity, torsion, curvature and Bianchi identities in
    metric-affine spacetimes, Class. Quant. Grav. 9 (1992)
    553--568.
    J.Lenzen, Nuovo Cimento 82B (1984) 85.
    A.Dimakis, Ann. Inst. Henri Poincare 51, 371, 389 (1989).
    H.Chen, Some Nonlinear Effects in Gauge Theories of Gravity (MSc.Thesis, National Central University, Chungli, 1997).
    F.H.Ho and J.M.Nester, Poincare gauge theory with coupled even and odd parity spin-0 modes:
    Cosmological normal modes, Ann. Phys. (Berlin)} 524 (2012) 97 106.
    A.V.Minkevich and I.M.Nemenman, Class. Quant. Grav.12 (1995) 1259.
    A.V.Minkevich and A.S.Garkun, Class. Quant. Grav.23 (2006) 4237.
    A.V.Minkevich, A.S.Garkun and V.I.Kudin, Class. Quant. Grav.f24 (2007) 5835.
    P.Baekler and F.W.Hehl, Beyond Einstein Cartan gravity: Quadratic torsion and curvature invariants with even and odd parity
    including all boundary terms, Class. Quantum Grav.28 (2011) 215017,
    X. Z. Li, C.B. Sun and P.Xi, Physical Review D 79 (2009) 027301.
    X.Z.Li, C.B.Sun and P.Xi, J. Cosmol. Astropart. Phys. JCAP04 (2009) 015.
    X.C.Ao, X.Z.Li and P.Xi, Phys. Lett. B 694 (2010) 186.
    C.H.Wang and Y.H.Wu, Class. Quant. Grav. 26 (2009) 045016.
    X.C. Ao and X.Z. Li, J. Cosmol. Astropart. Phys. 1202 003, 2012,
    G.F.R.Ellis and M.A.H.MacCallum, Commun. Math. Phys. 12 (1969) 108.
    M.A.H. MacCallum and A.H.Taub, Commun. Math. Phys. 25 (1972) 173.
    A.Ashetkar and J.Samuel, Class. Quantum Grav. 8 (1991) 2191.
    N.J.Poplawski, Phys. Lett. B 690 (2010) 73.
    J. M. Nester, Class. Quantum Grav. 21 (2004) S261.
    J. A. Isenberg and J. M. Nester, Canonical Gravity,
    Ch. 3 in General Relativity and Gravitation, One Hundred
    Years After the Birth of Albert Einstein, Vol. I, ed.A. Held,
    (Plenum, New York,1980) pp 23.
    T. C. P. Chui and W.-T Ni, Phys. Rev .Lett. 71 (1993) 3247.
    W.T Ni, Class. Quantum Grav. 13 (1996) A135.
    L.N.Chang and C.Soo, Class. Quantum Grav. 20 (2003) 1379.
    S. Capozziello, G. Iovane, G. Lambiase and C. Stornaiolo C, Europhys. Lett. 46 (1999) 710.
    S. Capozziello, S. Carloni and A. Troisi, arXiv:astroph0303041 (2003).
    M. Bruggen, Gen. Rel. Grav. 31 (1999) 1935
    V. A. Kostelecky V, N. Russel and J. Tasson J, Phys. Rev .Lett. 100 (2008) 111102
    S.Capozziello, V. F. Cardone, E. Piedipalumbo, M. Sereno and A. Troisi, Int. J. Mod. Phys. D 12 (2003) 381

    QR CODE
    :::