| 研究生: |
鄭盈吟 Ying-Ying Cheng |
|---|---|
| 論文名稱: |
意旁結合度、意旁表意透明度對中文閱讀的影響 Combinability and semantic transparency effects of semantic radical in reading Chinese characters |
| 指導教授: |
鄭仕坤
Shih-Kuen Cheng 李佳穎 Chia-Ying Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 認知與神經科學研究所 Graduate Institute of Cognitive and Neuroscience |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 事件相關電位 、意旁表意透明度 、意旁結合度 、P200 、N400 |
| 外文關鍵詞: | semantic transparency, combinability, semantic radical, ERPs, P200, N400 |
| 相關次數: | 點閱:24 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的在探討意旁的處理對中文字辨識歷程的影響。首先在建立意旁結合度效果的基本現象。實驗一和實驗二分別使用假字和非字情境,操弄真字的字頻與意旁結合度,進行中文字彙判斷作業(CDT)。在對真字的反應時間上發現,使用假字的情境迫使受試者需要精確提取語音或語意訊息才能做出反應,得到抑制的意旁結合度效果。而使用非字的情境允許受試者依照字形上的熟悉度作反應,得到促進的意旁結合度效果。意旁結合度效果在不同實驗情境下方向相反的結果,支持意旁的處理符合二階段模式(Vitevitch & Luce, 1999)。為了進一步探討這兩個處理階段的生理指標,實驗三進行CDT作業同時收集腦電波訊號。結果發現在低頻字中,意旁結合度低的字引發比較正向的P200,反映早期字形處理的困難度。意旁結合度高的字引發比較正向的N400,反映晚期來自候選字的競爭。顯示意旁處理的兩個階段可以先後反映在P200和N400的振幅上。藉助這兩個腦電波指標,實驗四則試圖釐清意旁提示語意的功能在哪一個階段介入並且影響意旁的處理。實驗中進一步操弄意旁表意透明度與意旁結合度,進行CDT作業並且收集腦電波訊號。結果發現在P200和N400皆呈現兩變項間的交互作用,在意旁表意透明度高的情況下得到和實驗三型態相同的意旁結合度效果。綜合本研究的結果支持意旁的處理經過兩個階段,早期階段會激發一群具有相同意旁的字形表徵,這些候選字在晚期階段會互相競爭與干擾。而意旁的功能在早期和晚期階段皆產生影響,在意旁能夠有效提示整字語意的情況下,比較容易凸顯意旁處理的二階段特徵。顯示具有相同意旁的字群可能會依據其意旁對語意提示的有效度,在兩個處理階段形成次組群。
The aim of the present study is to explore the role of semantic radicals in Chinese character recognition. First of all is to demonstrate the property of combinability effect for semantic radicals. In experiment 1 and 2, the character decision tasks (CDT) with different no-trials, pseudo-character and non-character respectively, are used. The character frequency and the combinability of semantic radical are manipulated in real Chinese characters as materials. In the CDT with pseudo-characters, subjects have to retrieve the precise lexical representation of the character for making decision. It reveals an inhibitory combinability effect on the mean reaction time (RT) of real characters. In the CDT with non-characters, subjects could make a response relying on the familiarity with orthography. It reveals a facilitative combinability effect on mean RT of real characters. The reversed pattern of combinability effects suggest that the processing of semantic radicals follows the operation of two levels of processing (Vitevitch & Luce, 1999). In order to explore physiological indices of the two levels, event related potentials (ERPs) are recorded in CDT in the experiment 3. In low frequency characters, it shows the semantic combinability effect on P200 and N400. Characters with low combinability semantic radical show more positive P200 than those with high combinability semantic radical. Characters with high combinability semantic radical show more negative N400 than those with low combinability semantic radical. It suggests that the amplitude of P200 and N400 can index the early and late level of processing respectively. In experiment 4, the combinability of semantic radical and the semantic transparency of the character are manipulated in CDT with ERPs recorded. The interactions between combinability and transparency are revealed on both P200 and N400. The combinability effect in high transparency characters shows the same pattern as that in experiment 3. In summary, the current results suggest that the processing of semantic radicals follows the operation of two levels of processing. The functional feature of semantic radicals is involved at both the early and the late levels.
徐峻賢 (2005)。表音一致性、聲旁結合度對中文閱讀的影響。中央大學認知神經科學研究所碩士論文。中壢
黃緒文 (2003)。鄰項個數對中文雙字詞詞彙判斷的影響。陽明大學生命科學院神經科學研究所碩士論文。台北
Academia Sinica balanced corpus (version 3). (1998). Taipei, Taiwan: Academia Sinica.
Barber, H., Vergara, M., & Carreiras, M. (2004). Syllable-frequency effects in visual word recognition : evidence from ERPs. NeuroReport, 15(3), 545-548.
Carreiras, M., Vergara, M., & Barber, H. (2005). Early event-related potential effects of syllabic processing during visual word recognition. Journal of Cognitive Neuroscience, 17(11), 1803-1817.
Chen, M. J., & Weekes, B. S. (2004). Effects of semantic radicals on Chinese character categorization and character decision. Chinese Journal of Psychology, 46(2), 181-196.
Chen, M. J., Weekes, B. S., Peng, D.-L., & Lei, Q. (2006). Effects of semantic radical consistency and combinability in Chinese character processing. In P. Li et al. (Eds.), Handbook of East Asian psycholinguistics. Vol. 1: Chinese. (pp. 175-186). Cambridge, England: Cambridge University Press.
Coles, M., & Rugg, M. D. (1996). Event-related brain potentials: an introduction. In Rugg, M. D., & Coles, M.(Eds.) Electrophysiology of Mind. Oxyford University Press.
Ding, G., Peng, D., & Taft, M. (2004). The nature of the mental representation of radicals in Chinese: A priming study. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(2), 530-539.
Federmeier, K. D., & Kutas, M. (1999). Right words and left words: elelctrophysiological evidence for hemispheric differences in meaning processing. Cognitive Brain Research, 8, 373-392.
Federmeier, K. D., & Kutas, M. (2002). Picture the difference: electrophysiological investigations of picture processing in the two cerebral hemispheres. Neuropsychologia, 40, 730-747.
Feldman, L. B., & Siok, W. W. T. (1997). The role of component function in visual recognition of Chinese characters. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23(3), 776-781.
Feldman, L. B., & Siok, W. W. T. (1999). Semantic radicals contribute to the visual identification of Chinese characters. Journal of Memory and Language, 40, 559-576.
Feldman, L. B., & Siok, W. W. T. (1999). Semantic radicals in phonetic compounds: Implications for visual character recognition in Chinese. In J. Wang, A. W. Inhoff, & H. C. Chen (Eds.), Reading Chinese script: A cognitive analysis (pp. 19-35). Hillsdale, NJ: Erlbaum.
Holcomb, P. J. (1993). Semantic priming and stimulus degradation: Implications for the role of the N400 in language processing. Psychophysiology, 30, 47-61.
Holcomb P. J., Grainger J., & O’Rourke T. (2002). An electrophysiological study of the effects of orthographic neighborhood size on printed word perception. Journal of Cognitive Neuroscience, 14(6), 938-950.
Hsiao, J. H. -W., Shillcock, R., & Lavidor, M. (2006). A TMS examination of semantic radical combinability effects in Chinese character recognition. Brain Research, 1078, 159-167.
Kutas, M., & Hillyard, S. A. (1980). Reading senseless sentences: brain potentials reflect semantic incongruity. Science, 207, 203-205.
Kutas, M. & Hillyard, S. A. (1984). Brain potentials reflect word expectancy and semantic association during reading. Nature, 307, 161-163.
Liu, Y., Perfetti, C. A., & Hart, L. (2003). ERP evidence for the time course of graphic, phonological, and semantic information in Chinese meaning and pronunciation decisions. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(6), 1231-1247.
Luck, S. J., & Hillyard, S. A. (1994). Electrophysiological correlates of feature analysis during visual search. Psychophysiology, 31, 291-308.
Perfetti, C.A., & Tan, L. H. (1998). The time-course of graphic, phonological, and semantic activation in Chinese character identification. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 1-18.
Perfetti, C.A., & Tan, L. H. (1999). The consitiruency model of Chinese word identification. In J. Wang, A. W. Inhoff, & H. C. Chen (Eds.), Reading Chinese script: A cognitive analysis (pp. 115-134). Hillsdale, NJ: Erlbaum.
Perfetti, C.A., Liu, Y., & Tan, L. H. (2005). The lexical constituency model: some implications of research on Chinese for general theories of reading. Psychological Review, 112(1), 43-59.
Pylkkanen, L., Stringfellow, A., & Marantz, A. (2002). Neuromagnetic evidence for the timing of lexical activation: an MEG component sensitive to phonotactic probability but not to beighborhood density. Brain and Language, 81, 666-678.
Rugg, M. D. (1990). Event-related brain potentials dissociate repetition effects of high- and low-frequency words. Memory and Cognition, 18(4), 267-279.
Sereno, S. C., Rayner K., & Posner, M. I. (1998). Establishing a time-line of word recognition: evidence from eye movements and event-related potentials. Cognitive Neuroscience, 9(10), 2195-2200.
Taft, M. (2006). Processing of characters by native Chinese readers. In P. Li et al. (Eds.), Handbook of East Asian psycholinguistics. Vol. 1: Chinese. (pp. 237-249). Cambridge, England: Cambridge University Press.
Taft, M., & Zhu, X. (1997). Submorphemic processing in reading Chinese. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23(3), 761-775.
Vitevitch, M. S., & Luce P. A., (1998). When words compete: Levels of processing in spoken word recognition. Psychological Science, 9, 325-329.
Vitevitch, M. S., & Luce P. A., (1999). Probabilistic phonotatics and neighborhood activation in spoken word recognition. Journal of Memory and Language, 40, 347-408.
Yeh, S.-L., & Li, J.-L. (2004). Sublexical processing in visual recognition of Chinese characters: Evidence from repetition blindness for subcharacter components. Brain and Language, 88, 47-53.
Zhou, X., & Marslen-Wilson W. (1999). Sublexical processing in reading Chinese. In J. Wang, A. W. Inhoff, & H. C. Chen (Eds.), Reading Chinese script: A cognitive analysis (pp. 37-63). Hillsdale, NJ: Erlbaum.
Zhou, Y. G. (1978).Xiandai hanzihong shengpangde biayyin gongneng wenti [To what degree are the “phonetics” of present-day Chinese characters still phonetic?] Zhongguo Yuwen, 146, 172-177.