| 研究生: |
王郁如 Yu-ju Wang |
|---|---|
| 論文名稱: |
台灣地殼及頂部地函三維P波、S波衰減模型對於造山帶構造特性與機制之探討 Three-dimensional Qp- and Qs- tomography beneath Taiwan orogenic belt: implications for tectonic and thermal structure |
| 指導教授: |
馬國鳳
Kuo-fong Ma |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
地球科學學院 - 地球物理研究所 Graduate Institue of Geophysics |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 159 |
| 中文關鍵詞: | 中央山脈 、台灣 、造山帶 、衰減 、影像層析法 |
| 外文關鍵詞: | crustal structure, attenuation, Qp, Qs, tomography, tectonics |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用1991年至2007年底台灣強震網地震規模ML 4.5-5.5的資料,來推求P波及S波三維衰減模型以避免震源的複雜效應。所使用的資料區間包括1999年集集地震之餘震資料,因此,在中央山脈下的資料覆蓋度相當完整。在ω-2的震源模型假設及Q與頻率無關的假設下,我們固定每一地震事件的拐角頻率,以非線性逆推擬合觀測振幅頻譜1~30Hz的頻率範圍,估計出超過18,000筆的t*數值。每一t*數值皆以數值量化資料品質的好壞,以提供衰減影像逆推時適當的權重值。
逆推結果顯示,Qp、Qs衰減參數在斷層兩側,例如,車籠埔斷層、高屏斷層和潮州斷層的上下盤有明顯的數值差異。橫跨車籠埔斷層,斷層上盤的Qp值低於下盤的數值約85,而Qs值則低於下盤約110。Qp/Qs為1.2的等值線則恰好描繪出車籠埔斷層的斷層幾何形貌。在中央山脈下,一低Qp、低Qs和高Qp/Qs的衰減特徵正好對應於無震帶的位置。結合衰減及震波速度特性,我們可以排除液體對該構造區的影響,並推測無震帶主要為溫度效應所造成。而Qs衰減模型與Yamato et al., (2009)熱構造數值模型的吻合同時暗示著中央山脈下無震帶的物質可能來自因板塊碰撞擠壓而向上崛起的下部大陸地殼物質。在5-22公里的深度範圍,該低Qs在熱構造數值模型所對應的溫度為400°C-600°C。若利用Kampfmann & Berckhemer (1985)和Sato (1992,1994)的衰減值-地溫方程式估計中央山脈19公里深的地殼溫度,則中央山脈與周圍構造區的相對溫差約為75°C。此數值與Yamato et al., (2009)或是 Simoes et al., (2007)的熱構造數值型皆一致,然而其絕對溫度則高於目前台灣現有的熱構造模型約200°C。此結果暗示著適當的地殼岩石Q值與溫度估計關係式應用於本研究Q值深度範圍的地溫估計是必要的。
Qs衰減模型與台灣板塊碰撞模式及熱構造數值模型的比較明顯地反映出岩石流變學(rheology)及溫度變化的造山運動訊息。此外,也間接提供了區別岩石強弱的有用資訊。
We determined the three dimensional Qp- and Qs- structure of the Taiwan orogenic belt to enhance understanding of the related tectonic and thermal structure beneath the collision zone. The inversion used t* values measured from the spectra of P- and S-waves from the dense Taiwan strong motion network for moderate size earthquakes (ML 4.5-5.5) to avoid source complexity. The time period of our data set, 1991-2007, includes the aftershock sequence of the 1999 Chi-Chi earthquake, which provides good ray coverage in the central Taiwan. Over 18,000 velocity spectra from 883 earthquakes were analyzed. A non-linear least square technique is applied to the spectra for t* determination by assuming a ω-2 source model for the frequency band of 1-30 Hz. A frequency-independent Q was assumed in this study. The corner frequency of a specific event was fixed for the corresponding stations, and a quality index was defined to assure good quality data for the inversion.
The results reveal the sharp variation of Qp and Qs across the recently ruptured Chelungpu Fault, and the Kaoping and Chaochou Faults in Pingtung Plain. The Q values in the hangingwall are smaller by about 85 and 110 for Qp, and Qs, respectively, relative to the footwall. The fault geometry is distinctly delineated by the contour of Qp/Qs of 1.2, which extends to the depth of the geologically identified décollement structure. Beneath the Central Range, the low Qp, low Qs and high Qp/Qs features coincide well with the aseismic zone. The low Vp, low Qp, low Qs features within a low Vp/Vs as of about 1.65 and a high Qp/Qs as of about 1.4 suggest that the aseismic zone is related to the temperature effect rather than the fluid effect. Comparison to the recent thermo-mechanical numerical models of Taiwan shows that the aseismic low Qs zone corresponds to the exhumation of the lower crust. And the low Qs regime (high attenuation) at the depth of 5-22 km coincides with predicted temperatures of 400°C-600°C. Using the thermal equations of Kampfmann & Berckhemer (1985) and Sato (1992,1994), the temperature estimations show the same relative variation of about 75°C beneath the Central Range which is similar to the value of the thermal model from Yamato et al., (2009) or Simoes et al., (2007). However the absolute value is 200°C higher than the values of current thermal models. The higher value of this estimation suggests that the more appropriate equation for the crustal depth is needed.
The Qs comparison with the major tectonic and thermal mechanical models of Taiwan reveals that the shear wave attenuation model contains comprehensive rheological and thermal information of relevance to understand mountain building processes. This technique appears particularly useful for distinguishing strong and weak crustal regions in the absence of other constraints.
Abercrombie, R. E., Near-Source attenuation and site effects from comparision of surface and deep borehold recordings, Bull. Seismol. Soc. Am., 87, 731-744, 1997.
Abercrombie, R. E., Crustal attenuation and site effects at Parkfield, California, J. Geophys. Res., 105, 6277-6286, 2000.
Adams, D. A., and Abercrombie, R. E., Seismic attenuation above 10 Hz in southern California from coda waves recorded in the Cajon Pass borehole, J. Geophys. Res., 103, 24,257 – 24,270, doi:10.1029/98JB01757, 1998.
Aki, K., Attenuation of shear-waves in the lithosphere for frequencies from 0. 05 to 25 Hz, Phys. Earth Planet. Inter, 21, 50-60, 1980.
Allen, R. V., Automatic earthquake recognition and timing from single traces, Bull. Seism. Soc. Am., 68, 1521-1532, 1978.
Anderson, D. L., New Theory of the Earth, 2007.
Anderson, D. L. and Given, J., Absorption band Q model for the Earth, J. Geophys. Res., 87,3893-3904, 1982.
Artemieva, I. M., Billien, M., Lvque, J. J. and Mooney, W. D., Shear wave velocity, seismic attenuation, and thermal structure of the continental upper mantle, Geophys. J. Int., 157, 2004.
Barazangi, M. and Isacks, B., Lateral variations of seismic wave attenuation in the upper mantle above the inclined earthquake zone of the Tonga island arc: deep anomaly in the upper mantle, J. Geophys. Res., 76, 8493-8516, 1971.
Bertrand, E. et al.,, Magnetotelluric evidence for thick-skinned tectonics in central Taiwan, Geology, 37, 711–714, 2009.
Bhattacharyya, J. G., Masters G. and Shearer P., Global lateral variations of shear attenuation in the upper mantle, J. Geophys. Res., 101, 22,273-22,290, 1996.
Biq C., The Kenting melange and the Manila trench, Proc. geol. Soc.China, 20, 119–122, 1977.
Boadu, F. K., Fractured rock mass characterization parameters and seismic properties: Analytical studies, Applied Geophysics, 37, 1-19, 1997.
Boatwright, J., Choy, G. L., and Seekins, L. C., Regional estimates of radiated seismic energy, Bull. Seismol. Soc. Am., 1241– 1255, doi:10.1785/0120000932, 2002.
Bussy, M. J., Montagner, J. P. and Romanowicz, B., Tomographic study of upper mantle attenuation in the Pacific Ocean, Geophys. Res. Lett., 20, 663-666,1993.
Chemenda, A. I., Mattauer, M., Malavieille, J.and Bokun, A. N., A mechanism for syn-collision rock exhumation and associated normal faulting: results from physical modeling, Earth planet. Sci. Lett., 132, 173–182, 1995.
Chen, K. C., Earthquake studies using the PANDA and PANDAII seismic array, PhD thesis. CERI/Dep. of Geol. Sci., Univ. of Memphis, Memphis, TN, USA, 1995.
Chen, K. J., S-Wave Attenuation Structure in the Taiwan Area and Its Correlation to Seismicity, Terr. Atmos. Ocean., 9, 1,97-118, 1998.
Chen, K. J., Yeh, Y. H. and Shyu, C. T, Qp Structure in the Taiwan Area and Its Correlation to Seismicity, Terr. Atmos. Ocean., 7, 4, 409-429, 1996.
Chen, K. P., Study of shallow structure beneath Kaoshiung–Pingtung region using local earthquake data, PhD thesis. Inst. of Geophys., Natl.Central Univ., Jungli, Taiwan, 1998.
Cheng, W. B., Three-dimensional crustal structure around the source area of the 1999 Chi-Chi earthquake in Taiwan and its relation to the aftershock locations, Terr. Atmos. Ocean., 11, 643–660, 2000.
Chouet, B., Temporal variation in the attenuation of earthquake coda near Stone Canyon, California, Geophys. Res. Lett; 6, 143-146, 1979.
Christensen, N. I., Poisson’s ratio and crustal seismology, J. Geophys. Res. 101, B2, 3139-3156, 1996.
Clawson, S. R., Smith, R. B. and Benz, H. M., P wave attenuation of the Yellowstone Caldera from three-dimensional inversion of spectral decay using explosion source seismic data, J. geophys. Res., 94, 7205-7222, 1989.
Cong, L. and Mitchell, B. J., Seismic velocity and Q structure of the Middle Eastern crust and upper mantle from surface-wave dispersion and attenuation, Pure Appl. Geophys., 153, 503-538, 1998.
Del Pezzo, E., Ferulano, F., Giarrusso, A. and Martini, M., Seismic coda Q and scaling law of the source spectra at the Aeolian Islands, southern Italy, Bull. Seism. Soc. Am., 73, 97, 1983.
Dziewonski, A. M. and Anderson, D. L., Preliminary reference Earth model, Phys. Earth Planet. Inter., 25, 297-356, 1981.
Eberhart-Phillips, D.and Chadwick, M., Three-dimensional attenuation model of the shallow Hikurangi subduction zone in the Raukumara Peninsula, New Zealand, J. geophys. Res., 107, doi:10.1029/2000JB000046, 2002.
Eberhart-Phillips, D., Reyners, M., Chadwick, M. and Stuart, G., Three-dimensional attenuation structure of the Hikurangi subduction zone in the central North Island, New Zealand, Geophys. J. Int., 174, 418–434, 2008a.
Eberhart-Phillips, D., Chadwick, M. and Bannister, S., Three dimensional attenuation structure of central and southern South Island, New Zealand, from local earthquakes, J. geophys. Res., 113, doi:10.1029/2007JB005359, 2008b.
Ellwood, A., Wang, C. Y., Teng, L. S. and Yen, H. Y., Gravimetric examination of thin-skinned detachment vs basement-involved models for the Taiwan orogen, J. Geol. Soc. China, 39, 209-221, 1996.
Evans, J. R. and Zucca, J. J., Active high-resolution seismic tomography of compressional wave velocity and attenuation structure at Medicine Lake volcano, northern California Cascade Range, J. Geophys. Res., 93, 15016-15036, 1988.
Flanagan, M. P. and Wiens, D. A., Attenuation structure beneath the Lau backarc spreading center from teleseismic S phase, Geophys. Res. Lett., 17, 2117-2120, 1990.
Gardner, G. H. F., Wyllie, M. R. J. and Droschak, D. M., Effects of pressure and fluid saturation on the attenuation of elastic waves in sands, J. Petrol. Technol., 16, 189-198, 1964.
Geller, R. J., Scaling relations for earthquake source parameters and magnitudes, Bull. Seism. Soc. Am., 66, 1501-1523, 1976.
Guo, H., Lerner-Lam A. and Caress, D. W., Anomalous body wave attenuation in the mainshock region of 1989 Loma Prieta, California Earthquake (abstract), EOS Trans. AGU, 73, 43, 1992.
Haberland, C. and Rietbrock, A., Attenuation tomography in the western central Andes: A detailed insight into the structure of a magmatic arc, J. Geophys. Res., 106, 11,151-111,167, 2001.
Hauksson, E. and Shearer, P. M., Attenuation models (Qp and Qs) in three dimensions of the southern California crust: Inferred fluid saturation at seismogenic depths, J. Geophys. Res., 111, 1-21, 2006.
Hsu, S. K., Liu, C. S., Shyu, C. T., Liu, S. Y., Lallemand, S. and Wang, C., New Gravity and magnetic anomaly maps in the Taiwan-Luzon region and their preliminary interpretation, Terr. Atmos. Ocean., 9, 509–532, 1998.
Hsu, S. K., Yeh, Y. C., Lo, C. L., Lin, A. T. and Doo, W. B., Link between crustal magnetization and earthquakes in Taiwan, Terr. Atmos. Ocean. Sci., 19, doi: 10.3319/TAO.2008.19.5.000(T), 2008.
Hu, J. C., Hou, C. S., Shen, L. C., Chan, Y. C., Chen, R. F., Huang, C., Rau, R. J., Chen, K. H. H., Lin, C. W., Huang, M. H. and Nien, P. F., Fault activity and lateral extrusion inferred from velocity field revealed by GPS measurements in the Pingtung area of southwestern Taiwan, Journal of Asian Earth Sciences, 31, 287-302, 2007.
Huang, C. Y., Yuan, P. B., Lin, C. W., Wang, T. K. and Chang, C. P., Geodynamic processes of Taiwan arc–continent collision and comparison with analogs in Timor, Papua New Guinea, Urals and Corsica, Tectonophysics, 325, 1-21, 2000.
Hough, S. E., Lees, J. M. and Monastero, F., Attenuation and source properties at the Coso Geothermal Area, California, Bull. Seism. Soc. Am., 89, 1606-1619, 1999.
Ito, S., Ito, H., Horiuchi, S. and Iio, Y., Local attenuation in western Nagano, central Japan, estimated from seismograms recorded in three boreholes, Geophys. Res. Lett., 31, doi:10.1029/2004GL020745, 2004.
Jackson, I. and Arculus, R. J., Laboratory wave velocity measurements on lower crustal xenoliths from Calcutteroo, South Australia, Tectonophysics, 101, 185-197, 1984.
Jackson, I., Paterson, M. S. and Gerald, J. D. F., Seismic wave dispersion and attenuation in Aheim dunite: an experimental study, Geophys. J. Int., 108, 517-534, 1992.
Jin, A. and Aki, K., Temporal change in coda Q before the Tangshan earthquake of 1976 and the Haicheng earthquake of 1975, J. Geophys. Res., 91, 665-674, 1986.
Johnston, D. H., Toksoz, M. N. and Timur, A., Attenuation of seismic waves in dry and saturated rocks: II. Mechanisms, Geophys., 44, 691-711, 1979.
Johnston, D. H. and Toksoz, M. N., Ultrasonic P and S wave attenuation in dry and saturated rocks under pressure, J. Geophys. Res., 85, 925-936, 1980.
Kampfmann, W. and Berckhemer, H., High temperature experiments on the elastic and anelastic behaviour of magmatic rocks, Phys. Earth Planet. Inter., 40, 223—247, 1985.
Kern, H. and Richter, A., Temperature derivatives of compressional and shear wave velocities in crustal and mantle rocks at 6 kbar confining pressure, J. Geophys, 49, 47-56, 1981.
Kim, K. H., Chiu, J. M., Pujol, J., Chen, K. C., Huang, B. S., Yeh, Y. H. and Shen, P., Three-dimensional Vp and Vs structural models associated with the active subduction and collision tectonics in the Taiwan region, Geophys. J. Int., 162, 204–220, 2005.
Lawrence, J. F., Wiens, D. A., Nyblade, A. A., Anandakrishan, S., Shore, P. J. and Voigt, D., Upper mantle thermal variations beneath the Transantarctic Mountains inferred from teleseismic S-wave attenuation, Geophys. Res. Lett, 33, 2006.
Lee, C. P., Hirata, N., Huang, B. S., Huang, W. G. and Tsai, Y. B., Anomalous Seismic Attenuation along the Plate Collision Boundary in Southeastern Taiwan: Observations from a Linear Seismic Array, Bull. Seism. Soc. Am., 99, 2662, 2009.
Lee, C. T., Cheng, C. T., Liao, C. W. and Tsai, Y. B., Site Classification of Taiwan Free-Field Strong-Motion Stations, Bull. Seism. Soc. Am., 91, 1283-1297, 2001.
Lees, J. M. and Lindley, G. T., Three-dimensional attenuation tomography at Loma Prieta: Inversion of t* for Q, J. Geophys. Res., 99, 6843-6863, 1994.
Lin, A. T., Watts, A. B. and Hesselbo, S. P., Cenozoic stratigraphy and subsidence history of the South China Seamargin in the Taiwan region, Basin Res., 15, 453–478, 2003.
Lin, C. H., Tectonic implications of an aseismic belt beneath the Eastern Central Range of Taiwan: crustal subduction and exhumation, J. geol. Soc. China, 41, 441–460, 1998.
Lin, C. H., Thermal modeling of continental subduction and exhumation constrained by heat flow and seismicity in Taiwan, Tectonophysics,324, 189–201, 2000.
Liu, H. P., Anderson, D.L. and Kanamori, H., Velocity dispersion due to anelasticity; implications for seismology and mantle composition, Geophys. J. Int., 47, 41-58, 1976.
Londono, J. M., Temporal change in coda Q at Nevado Del Ruiz volcano, Colombia, J. Volcanol. Geotherm. Res., 73, 129-139, 1996.
Lu, C. Y., Angelier, J., Chu, H. T. and Lee, J. C., Contractional, transcurrent, rotational and extensional tectonics: examples from northern Taiwan, Tectonophysics, 246, 129–146, 1995.
Ma, K. F.,Wang, J. H. and Zhao, D., Three-dimensional seismic velocity structure of the crust and uppermost mantle beneath Taiwan, J. Phys. Earth, 44, 85–105, 1996.
Malavieille, J., Lallemand, S., Dominguez, S., Deschamps, A., Lu, C. Y., Liu, C. S., Schnürle, P. and Crew, A. S., Arc-continent collision in Taiwan: new marine observations and tectonic evolution, in: Geology and Geophysics of an Arc-ContinentCollision, Taiwan, Republic of China, Geological Society of America Special Paper 358, pp. 187–211, 2002.
Michell, B. J., Regional Rayleigh wave attenuation in North America, J. Geophys. Res., 80, 4904-4916, 1975.
Michelini, A. and McEvilly, T. V., Seismological studies at parkfield.I. Simultaneous inversion for velocity structure and hypocenters using cubic b-splines parameterization, Bull. seism. Soc. Am., 81, 524–552, 1991.
Mitchell, B. J., Anelastic Structure and Evolution of the Continental Crust and Upper Mantle From Seismic Surface Wave Attenuation, Rev. Geophys., 33(4), 441–462, 1995.
Mouthereau, F., Deffontaines, B., Lacombe, O. and Angelier, J., Variations along the strike of the Taiwan thrust belt: basement control on structural style, wedge geometry, and kinematics, in: Geology and Geophysics of an Arc-Continent Collision, Taiwan, Republic of China, Vol. 358: Geological Society of America Special Paper, pp. 35-58, 2002.
Mouthereau, F., and Lacombe, O., Inversion of the Paleogene Chinese continental margin and thick-skinned deformation in the Western Foreland of Taiwan, J. Struct. Geol., 28, 1977-1993, 2006.
Murase, T. and McBirney, A. R., Properties of some common igneous rocks and their melts at high temperatures, Geol. Soc. Am. Bull., 84, 3563-3592, 1973.
Myers, S. C., Beck, S., Zandt, G. and Wallace, T., Lithospheric-scale structure across the Bolivian Andes from tomographic images of velocity and attenuation for P and S waves, J. Geophys. Res., 103, B9, 21233-21252,1998.
Nakajima, J. and Hasegawa, A., Estimation of thermal structure in the mantle wedge of northeastern Japan from seismic attenuation data, Geophys. Res. Lett., 30, 1760, 2003.
Nakanishi, I., Attenuation of multiple ScS wave beneath the Japanese Arc, Phys. Earth Planet. Inter., 19, 337-347, 1979.
Novelo-Casanova, D. A., Berg, E., Hsu, V. and Helsley, C. E., Time-space variation of seismic S-wave coda attenuation (Qc-1) and magnitude distribution (b-values) for the Petatlan earthquake, Geophys. Res. Lett., 12, 789-792, 1985.
O''Connell, R. J. and Budiansky, B., Viscoelastic properties of fluid-saturated cracked solids, J. Geophys. Res., 82, 5719-5735, 1977.
Pavlis, G. L. and Booker, J. R., The mixed discrete continuous inverse problem: Application to the simultaneous determination of earthquake hypocenters and velocity structure, J. Geophys. Res., 85,4801-4810,1980.
Peacock, S., McCann, C., Sothcott, J. and Astin, T. R., Experimental measurements of seismic attenuation In microfractured sedimentary rock, Geophys., 59, 1342, 1994.
Peng, J. Y., Aki, K., Chouet, B., Johnson, P., Lee, W. H. K., Marks, S., Newberry, J. T., Ryall, A. S., Stewart, S. W. and Tottingham, D. M., Temporal change in coda Q associated with the Round Valley, California, earthquake of November 23, 1984, J. Geophys. Res., 92, 3507-3526, 1987.
Rau, R. J. and Wu, F. T., Tomographic imaging of lithospheric structures under Taiwan, Earth planet. Sci. Lett., 133, 517–532, 1995.
Rietbrock, A., P wave attenuation structure in the fault area of the 1995 Kobe earthquake, J. Geophys. Res., 106, 4141-4154, 2001.
Rhea, S., Q determined from local earthquakes in the South Carolina coastal plain, Bull. Seism. Soc. Am., 74, 2257, 1984.
Roecker, S. W., Yeh, Y. H. and Tsai, Y. B., Three-dimensional P and S wave velocity structures beneath Taiwan: deep structure beneath anarc-continent collision, J. geophys. Res., 92, 10 547–10 570, 1987.
Romanowicz B., A global tomographic model of shear attenuation in the upper mantle. J. Geophys. Res., 100, 12375-12394, 1995.
Sanders, C. O., Ponko, S. C., Nixon, L. D. and Schwartz, E. A., Seismological evidence for magmatic and hydrothermal structure in Long Valley caldera from local earthquake attenuation and velocity tomography, J. geophys. Res., 100, 8311–8326, 1995.
Sato, H., Temporal change in attenuation intensity before and after the eastern Yamanashi earthquake of 1983 in Central Japan, J. Geophys. Res., 91, 2049-2062, 1986.
Sato, H., Sacks, I. S., Murase, T., Muncill, G. and Fukuyama, H., Qp-melting temperature relation in peridoite at high pressure and temperature: attenuation mechanism and implications for the mechanical properties of the upper mantle, J. Geophys. Res., 94, 10647-10661, 1989.
Sato, H., Thermal structure of the mantle wedge beneath northeastern Japan: magmatism in an island arc from the combined data of seismic anelasticity and velocity and heat flow, J. Volcanol. Geotherm. Res., 51, 237-252, 1992.
Sato, H., H2O and magmatism in island arc mantle inferred from seismic anelasticity and heat flow data, J. Phys. Earth, 42, 439-453, 1994.
Savage, J. C., Relation between P- and S-wave corner frequency in the seismic spectrum, Bull. Seismol. Soc. Am., 64, 1621-1627, 1974.
Scherbaum, F. and Wyss, M., Distribution of attenuation in the Kaoiki, Hawaii, source volume estimated by inversion of P wave spectra, J. Geophys. Res., 95, 12439-12448, 1990.
Schurr, B., Asch, G., Rietbrock, A., Trumbull, R. and Haberland, C., Complex patterns of fluid and melt transport in the central Andean subduction zone revealed by attenuation tomography, Earth Planet. Sci. Lett., 215, 105-119, 2003.
Shin, T. C., Duration-magnitude correction for Taiwan Telemetered Seismographic Network, Bull. Inst. Earth Sci., Acad. Sin., 6, 109-120, 1986.
Shito, A., Karato, S. and Park, J., Frequency dependence of Q in Earth’s upper mantle inferred from continuous spectra of body waves, Geophys. Res. Lett., 31, 28–32, 2004.
Shyu, J. B. H., Sieh, K., Chen, Y. G. and Liu, C. S., Neotectonic architecture of Taiwan and its implications for future large earthquakes, J. Geophys. Res., 110, doi:10.1029/2004JB003251, 2005.
Simoes, M., Avouac, J. P., Beyssac, O., Goffe, B., Farley, K. A. and Chen, Y. G., Mountain building in Taiwan: a thermokinematic model, J. geophys. Res., 112, B11450, doi:10.1029/2006JB004824, 2007.
Spencer, C. and Gubbins, D., Travel time inversion for simultaneous earthquake location and velocity structure determination in lateral varying media, Geophys. J. R. Astron. Soc., 63, 95-116, 1980.
Stork, A. L., and Ito, H., Source parameter scaling for small earthquakes observed at the western Nagano 800-m-deep borehole central Japan, Bull. Seismol. Soc. Am., 94, 1781-1794, doi:10.1785/012002214, 2004.
Takahashi, E., Melting of a dry peridotite KLB-1 up to 14 GPa: implications on the origin of peridotitic upper mantle, J. Geophys. Res., 91, 9367-9382, 1986.
Tittmann, B. R., Nadler, H., Clark, V. A., Ahlberg, L. A. and Spencer, T. W., Frequency dependence of seismic dissipation in saturated rocks, Geophys. Res. Lett., 8, 36-38, 1981.
Thurber, C. H., Local earthquake tomography: velocities and VP/VS-theory. In: Iyer, H.M., Hirahara, K. (Eds.), Seismic Tomography. Chapman and Hall, London, 563-583, 1993.
Toksoz, M. N., Johnston, D. H. and Timur, A., Attenuation of seismic waves in dry and saturated rocks: I. Laboratory measurements, Geophys., 44, 681-690, 1979.
Toomey, D. R. and Foulger, G. R., Tomographic inversion of local earthquake data from the Hengill-Grensdalur central volcano complex, Iceland, J. Geophys. Res., 94, 17,497-417,510, 1989.
Tsumura, N., Matsumoto, S., Horiuchi, S. and Hasegawa, A., Three-dimensional attenuation structure beneath the northeastern Japan arc estimated from spectra of small earthquakes, Tectonophysics, 319, 241-260, 2000.
Um, J. and Thurber C. H, A fast algorithm for two-point seismic ray tracing, Bull. Seism. Soc. Am., 77, 972-987, 1987.
Walsh, J. B., New analysis of attenuation in partially melted rock, J. Geophys. Res., 74, 4333-4337, 1969.
Walsh, J., Seismic attenuation in partially saturated rock, J. Geophys. Res., 100, 15407-15424, 1995.
Wang, C., Huang, T. H., Yen, I. C.,Wang, S. L. and Cheng,W. B., Tectonic environment of the 1999 Chi-Chi earthquake in central Taiwan and its aftershock sequence, Terr. Atmos. Ocean., 11, 661-678, 2000.
Wang, C. Y., Calculations of Qs and Qp using the spectral ratio method in the Taiwan area, Proc. Geol. Soc. China, 31, 81-98, 1988.
Wang, C. Y., Chang, C. H. and Yen, H. Y., An Interpretation of the 1999 Chi-Chi Earthquake in Taiwan based on the thin-skinned thrust model, Terr. Atmos. Ocean., 11, 609-630, 2000.
Wang, J. H., Liu, C. C. and Tsai, Y. B., Local magnitude determined from a simulated Wood-Anderson seismograph, Tectonophysics, 166, 15-26, 1989.
Wang, J. H., Chen, K. C. and Lee, T. Q., Depth distribution of shallow earthquakes in Taiwan, J. Geol. Soc. China, 37, 125-142, 1994.
Wang, Y. J., Ma, K. F., Mouthereau, F. and Eberhart-Phillips, D., Three-dimensional Qp- and Qs- tomography beneath Taiwan orogenic belt: implications for tectonic and thermal structure, Geophys. J. Int., 180, 891-910, 2009.
Winkler, K. W. and Nur, A., Seismic attenuation: Effects of pore fluids and frictional-sliding, Geophys., 47, 1-15, 1982.
Wittlinger, G., Haessler, H. and Granet, M., Three-dimensional inversion of Qp from low magnitude earthquakes analysis, Ann. Geoph., 6, 1, 427-437, 1983.
Wong, J., Hurley, P., West, G. F., Crosshole seismology and seismic imaging in crystalline rocks, Geophys. Res. Lett., 10, 686-689, 1983.
Wu, Y. M., Chang, C. H., Zhao Li, Shyu, J. B. H., Chen, Y. G., Sieh, K. and Avouac, J. P., Seismic tomography of Taiwan: Improved constraints from a dense network of strong motion stations, J. Geophys. Res., 112, B08312, 2007.
Wyllie, M. R. J., G. H. F. Gardner, and A. R. Gregory, Studies of elastic wave attenuation in porous media, Geophys., 27 ,569-589, 1962.
Yamato, P., Mouthereau, F.and Burov, E., Taiwan mountain building: insights from 2D thermo-mechanical modelling of a rheologically-stratified lithosphere, Geophys. J. Int., 176, 307–326, 2009.
Yen, H. Y., Yeh, Y. H. and Wu, F. T., Two-dimensional crustal structures of Taiwan from gravity data, Tectonophysics, 17, 104, 1998.
Yu, H. S. and Chiang, C. S., Kaoping shelf: morphology and tectonic significance, J. Asian Earth Sci., 15, 9-18, 1997.
Yu, S. B., Chen, H. Y. and Kuo, L. C., Velocity field of GPS stations in the Taiwan area, Tectonophysics, 274, 41–59, 1997.
Zhao, D., A tomographic study of seismic velocity structure in the Japan Island, Ph. D. Thesis, Tohoku University, 1990.
王郁如,馬國鳳,臺灣弧陸碰撞構造之地殼及頂部地函的三維S波衰減模型,國立中央大學地球物理硏究所碩士論文,2004。
林靜怡,.許樹坤,以地震層析法推求台灣北部地區的速度構造並探討流體的可能分佈,國立中央大學地球物理硏究所碩士論文,2001。
溫國樑,簡文郁,張毓文,陳國昌,許麗文,台灣地區強地動測站異常場址效應之研究,中央氣象局地震技術報告彙編,42,131-166,2005。
鄭文彬,臺灣地區三維震波衰減構造之探討。中央氣象局地震測報中心八十九年度研究報告地CW89-1A-16號,台北,共39頁,2000。
鄭世楠、葉永田,西元1604年至1988年台灣地區地震目錄,中央研究院地球科學研究所,IES-R-661,225頁,1989。