跳到主要內容

簡易檢索 / 詳目顯示

研究生: 呂明珊
Ming-shan Lu
論文名稱: Roles of the Pre-supplementary Motor Area and Right Inferior Frontal Gyrus in Stimulus Selective Stop-signal task: A Theta Burst Transcranial!Magnetic! Stimulation!Study
指導教授: 阮啟弘
Chi-Hung Juan
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 認知與神經科學研究所
Graduate Institute of Cognitive and Neuroscience
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 87
中文關鍵詞: 衝動控制Š行為抑制停止訊號作業跨顱磁刺激
外文關鍵詞: response inhibition, stop-signal task, pre-SMA, rIFG
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 衝動控制主要是將已準備執行的動作進行抑制的能力,當緊急情況發生時,此功能可使我們避免危險。在實驗研究中,停止訊號作業被最為廣泛地使用,並且發展出不同形式以因應不同的關於衝動控制的研究議題。先前研究指出,「前運動輔助區」(pre-supplementary motor area, pre-SMA)和「右側前額葉腦迴」(right inferior frontal gyrus, rIFG)皆與執行此應變能力有關,但對於這兩個腦區分別在衝動控制的角色卻未有一致的結論。本研究旨在探討忽略訊號對於停止訊號作業的影響,並利用跨顱磁刺激建立相關腦區在此神經機制下的因果關係。由於停止訊號出現時,具有突然出現且無法預測的特性,有些研究者認為,停止訊號並不單純是使受試者抑制動作,同時也包含了受試者對於此訊號的注意力攫取歷程。注意力搜尋作業發現rIFG與注意力攫取歷程有關。為了能將注意力攫取從停止訊號中分離出來,研究者在傳統停止訊號作業多增加一個「忽略」訊號,此訊息雖同樣具有不可預測性,但當受試者看到此信號時,被要求要持續地完成正在執行的動作。相關腦造影研究顯示,相對於忽略訊號,pre-SMA對於停止訊號的活化較大,支持pre-SMA確實與衝動控制歷程相關,然而忽略訊號的出現是否只有注意力攫取單一歷程卻受到挑戰。
    實驗一目的為檢測停止訊號作業是否會受到忽略訊號影響,比較在傳統停止訊號作業與增加忽略訊號的選擇停止訊號作業間的表現,並對於受試者策略進行分析。結果顯示忽略訊號確實對選擇停止訊號作業有顯著的影響,並不單純是注意力攫取的效果。實驗二以跨顱磁刺激探究當忽略訊號出現時,pre-SMA與rIFG在當中的神經機制。首先,根據實驗一的結果,先將受試者對於忽略訊號的反應時間分為快與慢兩組。先前研究結果發現,反應時間慢可能代表衝動控制不完全,並提出pre-SMA與rIFG皆與其相關。實驗二結果發現,反應時間慢組,當刺激rIFG時能使其反應時間顯著變快,說明rIFG相對於pre-SMA對於衝動控制不完全有主要的影響。而在反應時間快組,則是發現在刺激pre-SMA時,反應時間會顯著變慢。雖然目前相關文獻對於反應時間快組並無大量的探討,且腦造影研究結果則是顯示rIFG在其中的活化,但實驗者推論,當忽略訊號出現而受試者能較快反應時,需要去抑制衝動控制的產生,而此部分則是由pre-SMA負責,因此在電刺激短暫干擾下反會使得反應時間增加。
    pre-SMA與rIFG已被發現在功能與結構上是緊密連結的,本研究顯示在衝動控制的神經機制中,並對於不完全抑制的因果關係有初步了解,而未來研究期以在忽略訊號反應快者的神經機制做更深入地研究。


    The presupplementary motor area (pre-SMA) and the right inferior frontal gyrus
    (rIFG) are critical for successful response inhibition. However, different conclusions
    regarding their roles have been made. Since stop signals usually appear abruptly and
    infrequently, it has been argued that attentional capture may be involved in the task. To
    dissociate inhibition and attentional capture, an “ignore” condition in a stimulus selective
    stop-signal task was introduced. Because the ignore signal shares all but one feature with
    the stop signal but does not require stopping, performance in the ignore conditions can be
    contrasted to that in the stop conditions. However, some argued that the role of the ignore
    signal might not be as straightforward as it seems.
    The current study aimed to examine how ignore trials may affect the inhibitory
    process and the causal relations of pre-SMA and rIFG in implementing such trials by using
    theta burst TMS (cTBS). The objective of Experiment 1 was to testify whether “ignore”
    trials affect performance by comparing participants’ performances in both simple and
    selective stop-signal tasks by strategy classifications. Results showed that ignore trials also
    influenced the stop process, indicating that ignore trials may not only represent attentional
    capture but also partial inhibition (i.e. response slowing). In Experiment 2, cTBS was
    applied over the pre-SMA and rIFG to further examine their roles in partial inhibition in
    participants whose ignore RTs were fast and those who were slow. Results showed a
    double dissociation between brain regions. cTBS over the rIFG showed a decrease in RT in
    the slow ignore RT group, indicating the involvement of rIFG in partial inhibition. On the
    other hand, cTBS over the pre-SMA showed an escalated ignore RT, suggesting that the ! iii
    pre-SMA might play a role in suppressing inhibitory function in order to respond fast in
    ignore trials.

    1.#GENERAL#INTRODUCTION#................................................................................................................#1! 1.1 INHIBITORY CONTROL!.......................................................................................................................................!1! 1.2 THE STOP-SIGNAL PARADIGM AND INDEPENDENT HORSE RACE MODEL!..........................................!3! 1.3 SELECTIVE STOPPING!.........................................................................................................................................!7! 2.#NEURAL#SUBSTRATES#OF#RESPONSE#INHIBITION#..................................................................#12! 2.1 NEURAL CIRCUITRY OF INHIBITORY CONTROL!......................................................................................!12! 2.1.1 Medial prefrontal cortex (presupplementary motor area)!..........................................................!13! 2.1.2 Ventral prefrontal cortex (right inferior frontal cortex)!..............................................................!17! 2.2 AN ALTERNATIVE EXPLANATION!...............................................................................................................!20! 2.2.1. The confound of stop-signal paradigm!.............................................................................................!23! 2.2.2. Strategic heterogeneity in the selective stop signal paradigm!.................................................!28! 2.3 RESEARCH PURPOSE!.......................................................................................................................................!33! 3.#EXPERIMENT#1#....................................................................................................................................#36! 3.1 METHOD!..............................................................................................................................................................!37! 3.2 RESULTS!..............................................................................................................................................................!42! 3.2.1 Integral subjects analysis!........................................................................................................................!42! 3.2.2 Strategy group divided analysis!............................................................................................................!44! 3.3 DISCUSSION!.......................................................................................................................................................!56! 4.#EXPERIMENT#2#....................................................................................................................................#59! 4.1 METHOD!..............................................................................................................................................................!60! 4.2 RESULTS!..............................................................................................................................................................!63! 4.3 DISCUSSION!.......................................................................................................................................................!71! 5.#GENERAL#DISCUSSION#......................................................................................................................#75! 5.1 EXPERIMENTAL FINDINGS!.............................................................................................................................!75! 5.2 FUTURE DIRECTIONS AND LIMITATIONS OF RESEARCH!......................................................................!77! 5.3 CONCLUSION!.....................................................................................................................................................!80! REFERENCES#.............................................................................................................................................#82!

    Aron, A. R. (2007). The neural basis of inhibition in cognitive control. The Neuroscientist
    a Review Journal Bringing Neurobiology Neurology and Psychiatry, 13(3), 214–228.
    doi:10.1177/1073858407299288
    Aron, A. R. (2011). From reactive to proactive and selective control: developing a richer
    model for stopping inappropriate responses. Biological Psychiatry, 69(12), e55–e68.
    doi:10.1016/j.biopsych.2010.07.024
    Aron, A. R., Behrens, T. E., Smith, S., Frank, M. J., & Poldrack, R. a. (2007).
    Triangulating a cognitive control network using diffusion-weighted magnetic
    resonance imaging (MRI) and functional MRI. Journal of Neuroscience, 27(14),
    3743–3752. doi:10.1523/JNEUROSCI.0519-07.2007
    Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J., & Robbins, T. W. (2003).
    Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans.
    Nature Neuroscience, 6(2), 115–116. doi:10.1038/nn1003
    Aron, A. R., & Poldrack, R. a. (2006). Cortical and subcortical contributions to Stop signal
    response inhibition: role of the subthalamic nucleus. Journal of Neuroscience, 26(9),
    2424–2433. doi:10.1523/JNEUROSCI.4682-05.2006
    Aron, A. R., Robbins, T. W., & Poldrack, R. a. (2004). Inhibition and the right inferior
    frontal cortex. Trends in Cognitive Sciences, 8(4), 170–177.
    doi:10.1016/j.tics.2004.02.010
    Aron, A. R., Robbins, T. W., & Poldrack, R. a. (2014). Inhibition and the right inferior
    frontal cortex: one decade on. Trends in Cognitive Sciences, 18(4), 177–185.
    doi:10.1016/j.tics.2013.12.003
    Aron, A. R., & Verbruggen, F. (2008). Stop the presses! The West Virginia Medical
    Journal, 107(1), 4.
    Bedard, A.-C., Ickowicz, A., Logan, G. D., Hogg-Johnson, S., Schachar, R., & Tannock, R.
    (2003). Selective inhibition in children with attention-deficit hyperactivity disorder
    off and on stimulant medication. Journal of Abnormal Child Psychology, 31(3), 315–
    27.
    Bissett, P. G., & Logan, G. D. (2013). Selective Stopping? Maybe Not. Journal of
    Experimental Psychology. General, 9(2), 0–18. doi:10.1037/a0032122
    Cai, W., George, J. S., Verbruggen, F., Chambers, C. D., & Aron, a R. (2012). The role of
    the right pre-supplementary motor area in stopping action: two studies with
    event-related transcranial magnetic stimulation. Journal of Neurophysiology, 108(2),
    380–9. doi:10.1152/jn.00132.2012
    Chambers, C. D., Bellgrove, M. A., Stokes, M. G., Henderson, T. R., Garavan, H.,
    Robertson, I. H., … Mattingley, J. B. (2006). Executive “‘ Brake Failure ’” following
    Deactivation of Human Frontal Lobe, Journal of Cognitive Neuroscience, 18(3), 444–
    455.
    Chambers, C. D., Garavan, H., & Bellgrove, M. a. (2009). Insights into the neural basis of
    response inhibition from cognitive and clinical neuroscience. Neuroscience &
    Biobehavioral Reviews, 33(5), 631–646. doi:10.1016/j.neubiorev.2008.08.016
    Chen, C.-Y., Muggleton, N. G., Juan, C.-H., Tzeng, O. J. L., & Hung, D. L. (2008). Time
    pressure leads to inhibitory control deficits in impulsive violent offenders.
    Behavioural Brain Research, 187(2), 483–8. doi:10.1016/j.bbr.2007.10.011
    Chen, C.-Y., Muggleton, N. G., Tzeng, O. J. L., Hung, D. L., & Juan, C.-H. (2009).
    Control of prepotent responses by the superior medial frontal cortex. NeuroImage,
    44(2), 537–545. doi:10.1016/j.neuroimage.2008.09.005
    Corbetta, M., Kincade, J. M., & Shulman, G. L. (2002). Neural systems for visual orienting
    and their relationships to spatial working memory. Journal of Cognitive Neuroscience,
    14(3), 508–523.
    Coxon, J. P., Stinear, C. M., & Byblow, W. D. (2007). Selective inhibition of movement.
    Journal of Neurophysiology, 97(3), 2480–2489. doi:10.1152/jn.01284.2006
    De Fockert, J., Rees, G., Frith, C., & Lavie, N. (2004). Neural correlates of attentional
    capture in visual search. Journal of Cognitive Neuroscience, 16(5), 751–759.
    De Jong, R., Coles, M. G., & Logan, G. D. (1995). Strategies and mechanisms in
    nonselective and selective inhibitory motor control. Journal of Experimental
    Psychology: Human Perception and Performance, 21(3), 498–511.
    Decary, A., & Richer, F. (1995). Pergamon Response selection defieits in frontal
    execisions, 33(10), 1243–1253.
    Duann, J.-R., Ide, J. S., Luo, X., & Li, C. R. (2009). Functional connectivity delineates
    distinct roles of the inferior frontal cortex and presupplementary motor area in stop
    signal inhibition. Journal of Neuroscience, 29(32), 10171–10179.
    doi:10.1523/JNEUROSCI.1300-09.2009
    Floden, D., & Stuss, D. T. (2006). Inhibitory control is slowed in patients with right
    superior medial frontal damage. Journal of Cognitive Neuroscience, 18(11), 1843–
    1849.
    Garavan, H., Ross, T. J., & Stein, E. a. (1999). Right hemispheric dominance of inhibitory
    control: an event-related functional MRI study. Proceedings of the National Academy
    of Sciences of the United States of America, 96(14), 8301–8306.
    Hampshire, A., Chamberlain, S. R., Monti, M. M., Duncan, J., & Owen, A. M. (2010). The
    role of the right inferior frontal gyrus: inhibition and attentional control. NeuroImage,
    50(3-3), 1313–1319. doi:10.1016/j.neuroimage.2009.12.109
    Huang, Y.-Z., Edwards, M. J., Rounis, E., Bhatia, K. P., & Rothwell, J. C. (2005). Theta
    burst stimulation of the human motor cortex. Neuron, 45(2), 201–6.
    doi:10.1016/j.neuron.2004.12.033
    Hubl, D., Nyffeler, T., Wurtz, P., Chaves, S., Pflugshaupt, T., Lüthi, M., … Müri, R. M.
    (2008). Time course of blood oxygenation level-dependent signal response after theta ! 85
    burst transcranial magnetic stimulation of the frontal eye field. Neuroscience, 151(3),
    921–8. doi:10.1016/j.neuroscience.2007.10.049
    Isoda, M., & Hikosaka, O. (2007). Switching from automatic to controlled action by
    monkey medial frontal cortex. Nature Neuroscience, 10(2), 240–248.
    doi:10.1038/nn1830
    Jahfari, S., Stinear, C. M., Claffey, M., Verbruggen, F., & Aron, A. R. (2010). Responding
    with restraint: what are the neurocognitive mechanisms? Journal of Cognitive
    Neuroscience, 22(7), 1479–1492.
    Ko, Y.-T., & Miller, J. (2011). Nonselective motor-level changes associated with selective
    response inhibition: evidence from response force measurements. Psychonomic
    Bulletin Review, 18(4), 813–819. doi:10.3758/s13423-011-0090-0
    Levitt, H. (1971). Transformed up-down methods in psychoacoustics. Journal of the
    Acoustical Society of America, 49, 467–477.
    Li, C. R., Huang, C., Constable, R. T., & Sinha, R. (2006). Imaging response inhibition in
    a stop-signal task: neural correlates independent of signal monitoring and
    post-response processing. Journal of Neuroscience, 26(1), 186–192.
    doi:10.1523/JNEUROSCI.3741-05.2006
    Li, C. R., Huang, C., Yan, P., Bhagwagar, Z., Milivojevic, V., & Sinha, R. (2009). Neural
    Correlates of Impulse Control During Stop Signal Inhibition in Cocaine-Dependent
    Men. Neuropsychopharmacology, 33(8), 1798–1806.
    doi:10.1038/sj.npp.1301568.Neural
    Li, C. R., Ph, D., Chang, H., Hsu, Y., Wang, H., & Ko, N. (2006). Motor Response
    Inhibition in Children With Tourette’s Disorder, Journal of Neuropsychiatry and
    Clinical Neurosciences, 13, 417–419.
    Loftus, G. R., & Masson, M. E. (1994). Using confidence intervals in within-subject
    designs. Psychonomic Bulletin & Review, 1(4), 476–90. doi:10.3758/BF03210951
    Logan, G. D., Schachar, R. J., & Tannock, R. (1997). Impulsivity and inhibitory control,
    Psychological Sicence, 8(1), 60–65.
    Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function.
    Annual Review of Neuroscience, 24, 167–202. doi:10.1146/annurev.neuro.24.1.167
    Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7(3), 134–140.
    doi:10.1016/S1364-6613(03)00028-7
    Mostofsky, S. H., & Simmonds, D. J. (2008). Response inhibition and response selection:
    two sides of the same coin. Journal of Cognitive Neuroscience, 20(5), 751–761.
    Neubert, F., Mars, R. B., & Rushworth, M. F. S. (2013). Is there an inferior frontal cortical
    network for cognitive control and inhibition? In Principles of frontal lobe function
    (2nd ed., pp. 332–352).
    Ridderinkhof, K. R., Ullsperger, M., Crone, E. a, & Nieuwenhuis, S. (2004). The role of
    the medial frontal cortex in cognitive control. Science, 306(5695), 443–447.
    doi:10.1126/science.1100301
    Rubia, K., Smith, A. B., Brammer, M. J., & Taylor, E. (2003). Right inferior prefrontal
    cortex mediates response inhibition while mesial prefrontal cortex is responsible for
    error detection. NeuroImage, 20(1), 351–358. doi:10.1016/S1053-8119(03)00275-1
    Schachar, R. J., Tannock, R., & Logan, G. (1993). Inhibitory control, impulsiveness, and
    attention deficit hyperactivity disorder, Clinical Psychology Review, 13, 721–739.
    Schachar, R., Tannock, R., Marriott, M., & Logan, G. (1995). Deficient Inhibitory Control
    in Attention Deficit Hyperactivity Disorder, Journal of Abnormal Child Psychology,
    23(4), 411–437.
    Sharp, D. J., Bonnelle, V., De Boissezon, X., Beckmann, C. F., James, S. G., Patel, M. C.,
    & Mehta, M. a. (2010). Distinct frontal systems for response inhibition, attentional
    capture, and error processing. Proceedings of the National Academy of Sciences of the
    United States of America, 107(13), 6106–6111. doi:10.1073/pnas.1000175107
    Swann, N. C., Cai, W., Conner, C. R., Pieters, T. a, Claffey, M. P., George, J. S., …
    Tandon, N. (2012). Roles for the pre-supplementary motor area and the right inferior
    frontal gyrus in stopping action: electrophysiological responses and functional and
    structural connectivity. NeuroImage, 59(3), 2860–70.
    doi:10.1016/j.neuroimage.2011.09.049
    Van de Laar, M. C., van den Wildenberg, W. P. M., van Boxtel, G. J. M., & van der Molen,
    M. W. (2010). Processing of global and selective stop signals: application of Donders’
    subtraction method to stop-signal task performance. Experimental Psychology, 57(2),
    149–59. doi:10.1027/1618-3169/a000019
    Van de Laar, M. C., van den Wildenberg, W. P. M., van Boxtel, G. J. M., & van der Molen,
    M. W. (2011a). Lifespan changes in global and selective stopping and performance
    adjustments. Frontiers in Psychology, 2(December), 357.
    doi:10.3389/fpsyg.2011.00357
    Van de Laar, M. C., van den Wildenberg, W. P. M., van Boxtel, G. J. M., & van der Molen,
    M. W. (2011b). Lifespan changes in global and selective stopping and performance
    adjustments. Frontiers in Psychology, 2(December), 357.
    doi:10.3389/fpsyg.2011.00357
    Van Holst, R. J., van Holstein, M., van den Brink, W., Veltman, D. J., & Goudriaan, A. E.
    (2012). Response inhibition during cue reactivity in problem gamblers: an fMRI study.
    PloS One, 7(3), e30909. doi:10.1371/journal.pone.0030909
    Verbruggen, F., Schneider, D. W., & Logan, G. D. (2008). How to stop and change a
    response: the role of goal activation in multitasking. Journal of Experimental
    Psychology: Human Perception and Performance, 34(5), 1212–1228.
    doi:10.1037/0096-1523.34.5.1212

    QR CODE
    :::