跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊棨翔
Chi-Hsiang Yang
論文名稱: 超短極紫外線脈衝之單發式波形強度量測
Single-Shot Intensity Waveform Measurement of Ultrashort Extreme-UV Pulses
指導教授: 朱旭新
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 151
中文關鍵詞: 高階諧波超短極紫外線脈衝單發式波形強度量測
外文關鍵詞: High-order harmonic generation, Ultrashort Extreme-UV Pulses, Single-Shot Intensity Waveform Measurement
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去的二十年裡,超快雷射技術進展非常地迅速。強烈的雷射脈衝聚焦所產生的最大強度可以超過10^20方瓦/平方厘米。在這樣的強場機制下,雷射脈衝能量比一個電子的原子的鍵合能量高得多。因此,一個新的非線性光學領域已經啟動,並且有許多應用,如發展軟X射線雷射、雷射尾場電子加速器、雷射熔接,以及高階諧波產生。
    本論文記錄了我在高階諧波產生的研究成果與貢獻。第一章介紹高階諧波產生的背景,並指出高效率諧波產生的障礙。第二章介紹我們做相位匹配的高階諧波實驗。實驗結果表明,第25階的高階諧波(32.4奈米)能量為約1.2 奈焦耳/脈衝,對應的階波能量轉換效率約為10^-7。第25階的高階諧波發射的峰值亮度達到1.3×10^23 photons/sec/mm^2/mrad^2/0.1%BW。第三章介紹我們發展單發式的高階諧波強度波形測量。實驗結果表明,使用40飛秒和80飛秒諧波驅動脈衝,輸出高階諧波的脈衝時寬分別為44.3 飛秒和78.6飛秒。 高階諧波的波形強度穩定度分別為6 % 和 10 %. 第四章介紹我們利用一道反向傳播的拍波脈衝串來做準相位匹配的高階諧波理論和模擬,並且實際建造一套雙色光雷射系統來產生非等間距的拍波脈衝串,為了演示這套系統產生的拍波脈衝串,73飛秒相等間距拍波脈衝串與間距由45飛秒到140飛秒拍波脈衝串皆成功被產生。第五章為總結。


    Ultrafast laser technology has progressed rapidly in the past two decades. The maximum intensity produced at the focus of an intense laser pulse can exceed 10^20 W/cm^. In such high intensity regime, the laser pulse energy is much higher than the bonding energy of an electron to an atom. Therefore, a new field of nonlinear optics has been launched, and many applications such as soft x-ray lasers, laser-wakefield electron accelerators, laser fusion, and high-order harmonic generation (HHG) are developed.

    This thesis records my efforts and accomplishments in the research of high-order harmonic generation. Chapter 1 reviews the background of high-order harmonic generation and indicates the obstacles of efficient harmonic generation. Chapter 2 reports the experiment of our phase-matched HHG. The results show that the energy of the 25-th harmonic (32.4~nm) is about 1.2 nJ per pulse, corresponding to a harmonic conversion efficiency of 10^-7 order. The peak brightness of the 25-th harmonic emission reaches 1.3×10^23 photons/sec/mm^2/mrad^2/0.1%BW. Chapter 3 presents our single-shot measurement of the HHG intensity waveform. The results show that by using 40-fs and 80-fs harmonic-driving pulses, the output HHG durations are 44.3 fs and 78.6 fs, respectively. The shot-to-shot fluctuation is about 6 % and 10 %, respectively. Chapter 4 reports our theory and simulation of quasi-phase matching (QPM) of HHG with a counter-propagating optical beat wave and describes the synthesis of a beat-wave pulse train with increasing pulse separation for QPM HHG. For demonstration, pulse trains with equal separation of 73~fs and increasing separation from 45~fs to 140~fs are constructed.

    Abstract iii List of Figures iv 1 Introduction of High-Order Harmonic Generation 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Atoms in the Strong Laser Field . . . . . . . . . . . . . 2 1.2.1 Optical-Field Ionization . . . . . . . . . . . . . 2 1.3 Theory of High-order Harmonic Generation . . . . . . . 9 1.3.1 The Semi-Classical Model of HHG . . . . . . . 10 1.4 Phase Matching Considerations in HHG . . . . . . . . 14 2 Phase-Matched High-Order Harmonic Generation 19 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Experimental parameters of Phase-Matched HHG . . . 20 2.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . 21 2.4 Experimental Results . . . . . . . . . . . . . . . . . . . 24 3 Single-Shot Intensity Waveform Measurement of Ultrashort Extreme-UV Pulses by Spatially Encoded Transmission Gating 29 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . 32 3.3 Experimental Procedure . . . . . . . . . . . . . . . . . 36 3.4 Analysis of Experimental Data . . . . . . . . . . . . . . 42 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 48 4 Quasi-Phase Matching of High-order Harmonic Generation 49 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2 Selective-Zoning Method for Quasi-Phase Matching of HHG . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.3 Quasi-Phase Matching of HHG with a Counter-Propagating Optical Beat Wave . . . . . . . . . . . . . . . . . . . . 53 4.3.1 Theory of an Optical Beat Wave . . . . . . . . 53 4.3.2 QPM-HHG Simulation Method . . . . . . . . . 56 4.3.3 QPM-HHG Simulation Results . . . . . . . . . 60 4.4 Synthesis of a Beat-Wave Pulse Train with Increasing Pulse Separation for QPM HHG . . . . . . . . . . . . . 64 4.4.1 Two-Color Ti:sapphire Amplifier System . . . . 65 4.4.2 Characterization of the Beat Wave Pulse Train . 74 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 76 5 Conclusion and Perspective 79 Appendix A Program for the Calculation of MO-ADK Tunneling Ionization Rate 81 B Program for the Calculation of HHG Phase Matching Condition 89 C Program for the Calculation of Energy Losses in the Propagation through the Capillary 95 D Program for Calculation of the HHG Output with a Counter-Propagating Beat Wave 103 E Design of Grating-Pair Compressor for the Two-Color Amplifier System 113 Bibliography 119

    [1] P. B. Corkum, “Plasma perspective on strong field multiphoton
    ionization," Phys. Rev. Lett. 71, 1994{1997 (1993).
    [2] M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L'Huillier, and P. B.
    Corkum, “Theory of high-harmonic generation by low-frequency
    laser fields," Phys. Rev. A 49, 2117{2132 (1994).
    [3] E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev,
    J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T.
    Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-
    Cycle Nonlinear Optics," Science 320, 1614{1617 (2008).
    [4] J. Seres, E. Seres, A. J.Verhoef, G. Tempea, C. Streli, P. Wo-
    brauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, and F. Krausz,
    “Source of coherent kiloelectronvolt X-rays," Nature 433, 596
    (2005).
    [5] T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin,
    S. Brown, S. Aliauskas, G. Andriukaitis, T. Baliunas, O. D. Mcke,
    A. Pugzlys, A. Baltuka, B. Shim, S. E. Schrauth, A. Gaeta,
    C. Hernndez-Garca, L. Plaja, A. Becker, A. Jaron-Becker, M. M.
    Murnane, and H. C. Kapteyn, “Bright Coherent Ultrahigh Har-
    monics in the keV X-ray Regime from Mid-Infrared Femtosecond
    Lasers," Science 336, 1287{1291 (2012).
    [6] D. Popmintchev, M.-C. Chen, C. H. Garca, J. A. P. Hernndez,
    J. P. Siqueira, S. Brown, F. Dollar, B. C. Walker, P. Grychtol,
    L. Plaja, M. M. Murnane, H. Kapteyn, and T. Popmintchev,
    “Ultrahigh-Efficiency High Harmonic Generation Driven by UV
    Lasers," CLEO QELS.2013.QW1A.5.
    [7] L. V. Keldysh, “Ionization in the _eld of a strong electromagnetic
    wave," Sov. Phys. JETP 20, 1307-1314 (1965).
    [8] H. H Chu, “Construction of a 10-TW Laser of High Coherence
    and Stability and Its Application in Laser-Cluster Interaction and
    X-Ray Lasers," Ph.D. dissertation, National Taiwan University,
    (2005).
    [9] P. B. Corkum, N. H. Burnett, and F. Brunel, “Above-threshold
    ionization in the long wavelength limit," Phys. Rev. Lett. 62,
    1259-1262 (1989).
    [10] N. H. Burnett and P. B. Corkum, “Cold-plasma production for
    recombination extreme-ultraviolet lasers by optical-_eld-induced
    ionization," J. Opt. Soc. Am. B 6, 11951199 (1989).
    [11] L. D. Landau and E. M. Lifshitz, “Quantum Mechanics," (Perg-
    amon, London, 1978).
    [12] A. M. Perelomov, V. S. Popov, and M. V. Terentev, “Ionization
    of atoms in an alternating electric field," Sov. Phys. JETP 23,
    924 (1965).
    [13] M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ion-
    ization of complex atoms and atomic ions in an alternating elec-
    tromagnetic _eld," Sov. Phys. JETP 64, 1191 (1986).
    [14] X. M. Tong, Z. X. Zhao, and C. D. Lin, “Theory of molecular tun-
    neling ionization," PHYSICAL REVIEW A 66, 033402 (2002).
    [15] D. Dill and J. L. Dehmer, “Electronmolecule scattering and
    molecular photoionization using the multiple scattering method,"
    The Journal of Chemical Physics 61, 692 (1974).
    [16] X.L. Liang, X.C. Pan, and J.M. Li, “Ionization channels of su-
    perexcited molecules," Chin. Phys. Lett. 2, 545 (1985).
    [17] X.C. Pan, X.L. Liang, and J.M. Li, Acta Phys. Sin. 36, 426
    (1987).
    [18] K. C. Kulander, K. J. Schafer, and J. L. Krause, “Dynamics
    of short-pulse excitation, ionization and harmonic conversion,"
    Super-Intense Laser-Atom Physics 316, 95{110 (1993).
    [19] T. Pfeifer, C. Spielmann, and G. Gerber, “Femtosecond x-ray
    science," Rep. Prog. Phys. 69, 443 (2006).
    [20] A. R. Rundquist, “Phase-matched generation of coherent, ultra-
    fast x-rays using high harmonics," Ph.D. dissertation, Washing-
    ton State University, (1998).
    [21] K. P. Birch and M. J. Downs, “Correction to the updated Edln
    equation for the refractive index of air," Metrologia 31, 315
    (1994).
    [22] Bengt Edln, “The refractive index of air," Metrologia 2, 71 (1966).
    [23] P. Zeitoun, G. Faivre, S. Sebban, T. Mocek, A. Hallou, M. Fa-
    jardo, D. Aubert, P. Balcou, F. Burgy, D. Douillet, S. Kaza-
    mias, G. de Lach`eze-Murel, T. Lefrou, S. le Pape, P. Merc`ere, H.
    Merdji, A. S. Morlens, J. P. Rousseau, and C. Valentin, “A high-
    intensity highly coherent soft X-ray femtosecond laser seeded by
    a high harmonic beam," Nature 431, 426{429 (2004).
    [24] M.-C. Chou, P.-H. Lin, C.-A. Lin, J.-Y. Lin, J. Wang, and S.-
    Y. Chen, “Dramatic Enhancement of Optical- Field-Ionization
    Collisional-Excitation X-Ray Lasing by an Optically Preformed
    Plasma Waveguide," Phys. Rev. Lett. 99, 063904 (2007).
    [25] C. Winterfeldt, C. Spielmann, and G. Gerber, “Colloquium: Op-
    timal control of high-harmonic generation," Rev. Mod. Phys. 80,
    117{140 (2008).
    [26] B. W. J. McNeil and N. R. Thompson, “X-ray free-electron
    lasers," Nature Photonics 4, 814{821 (2010).
    [27] J. M. Schins, P. Breger, P. Agostini, R. C. Constantinescu, H. G.
    Muller, G. Grillon, A. Antonetti, and A. Mysyrowicz, “Observa-
    tion of Laser-Assisted Auger Decay in Argon," Phys. Rev. Lett.
    73, 2180{2183 (1994).
    [28] T. E. Glover, R. W. Schoenlein, A. H. Chin, and C. V. Shank,
    “Observation of Laser Assisted Photoelectric Effect and Fem-
    tosecond High Order Harmonic Radiation," Phys. Rev. Lett. 76,
    2468{2471 (1996).
    [29] S. Linden, J. Kuhl, and H. Giessen, “Amplitude and phase char-
    acterization of weak blue ultrashort pulses by downconversion,"
    Opt. Lett. 24, 569 (1999).
    [30] J. M. Schins, P. Breger, P. Agostini, R. C. Constantinescu, H.
    G. Muller, A. Bouhal, G. Grillon, A. Antonetti, and A. Mysy-
    rowicz, “Cross-correlation measurements of femtosecond extreme-
    ultraviolet high-order harmonics," J. Opt. Soc. Am. B 13, 197{
    200 (1996).
    [31] A. Bouhal, P. Sali`eres, P. Breger, P. Agostini, G. Hamoniaux, A.
    Mysyrowicz, A. Antonetti, R. Constantinescu, and H. G. Muller,
    “Temporal dependence of high-order harmonics in the presence
    of strong ionization," Phys. Rev. A 58, 389{399 (1998).
    [32] J. Norin, J. Mauritsson, A. Johansson, M. K. Raarup, S. Buil, A.
    Persson, O. Duhr, M. B. Gaarde, K. J. Schafer, U. Keller, C.-G.
    Wahlstrom, and A. LHuillier, “Time-Frequency Characterization
    of Femtosecond Extreme Ultraviolet Pulses," Phys. Rev. Lett. 88,
    193901 (2002).
    [33] L. C. Dinu, H. G. Muller, S. Kazamias, G. Mullot, F. Auge, P. Bal-
    cou, P. M. Paul, M. Kovacev, P. Breger, and P. Agostini, “Mea-
    surement of the Subcycle Timing of Attosecond XUV Bursts in
    High-Harmonic Generation," Phys. Rev. Lett. 91, 063901 (2003).
    [34] E. S. Toma, H. G. Muller, P. M. Paul, P. Breger, M. Cheret, P.
    Agostini, C. Le Blanc, G. Mullot, and G. Cheriaux, “Ponderomo-
    tive streaking of the ionization potential as a method for measur-
    ing pulse durations in the XUV domain with fs resolution," Phys.
    Rev. A 62, 061801 (2000)
    [35] Y. Mairesse and F. Quere, “Frequency-resolved optical gating for
    complete reconstruction of attosecond bursts," Phys. Rev. A 71,
    011-401 (2005).
    [36] G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R.
    Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Sta-
    gira, S. De Silvestri, and M. Nisoli, “Isolated Single-Cycle At-
    tosecond Pulses," Science 314, 443-446 (2006).
    [37] I. Thomann, E. Gregonis, X. Liu, R. Trebino, A. S. Sandhu, M.
    M. Murnane, and H. C. Kapteyn, “Temporal characterization of
    attosecond wave forms in the suboptical- cycle regime," Phys.
    Rev. A 78, 011-806 (2008).
    [38] P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Aug, P. Balcou,
    H. G. Muller, and P. Agostini, “Observation of a Train of At-
    tosecond Pulses from High Harmonic Generation," Science 292,
    1689-1692 (2001).
    [39] H. G. Muller, “Reconstruction of attosecond harmonic beating by
    interference of two-photon transitions," Appl. Phys. B 74, s17-s21
    (2002).
    [40] M. H. Sher, T. J. McIlrath, U. Mohideen, H.W. K. Tom, O. R.
    Wood, G. D. Aumiller, and R. R. Freeman, “Picosecond soft-
    x-ray pulse-length measurement by pumpprobe absorption spec-
    troscopy," Opt. Lett. 18, 646-648 (1993).
    [41] Y. Kobayashi, O. Yoshihara, Y. Nabekawa, K. Kondo, and S.
    Watanabe, “Femtosecond measurement of highorder harmonic
    pulse width and electron recombination time by _eld ionization,"
    Opt. Lett. 21, 417-419 (1996).
    [42] K. Oguri, T. Nishikawa, T. Ozaki, and H. Nakano, “Sampling
    measurement of soft-x-ray-pulse shapes byfemtosecond sequential
    ionization of kr+ in an intense laser _eld" Opt. Lett. 29, 1279-1281
    (2004).
    [43] I. Grguras, A. R. Maier, C. Behrens, T. Mazza, T. J. Kelly,
    P. Radcliffe, S. Dsterer, A. K. Kazansky, N. M. Kabachnik, T.
    Tschentscher, J. T. Costello, M. Meyer, M. C. Hoffmann, H.
    Schlarb, and A. L. Cavalieri, “Ultrafast X-ray pulse characteriza-
    tion at free-electron lasers," Nature Photonics 6, 852857 (2012).
    [44] M. Beye, O. Krupin, G. Hays, A. H. Reid, D. Rupp, S. d. Jong,
    S. Lee, W.-S. Lee, Y.-D. Chuang, R. Coffee, J. P. Cryan, J. M.
    Glownia, A. Fhlisch, M. R. Holmes, A. R. Fry, W. E. White, C.
    Bostedt, A. O. Scherz, H. A. Durr, and W. F. Schlotter, “X-ray
    pulse preserving single-shot optical cross-correlation method for
    improved experimental temporal resolution," Appl. Phys. Lett.
    100, 121108 (2012).
    [45] R. Riedel, A. Al-Shemmary, M. Gensch, T. Golz, M. Harmand,
    N. Medvedev, M. J. Prandolini, K. Sokolowski-Tinten, S. Toleikis,
    U. Wegner, B. Ziaja, N. Stojanovic, and F. Tavella, “Single-shot
    pulse duration monitor for extreme ultraviolet and X-ray freeelec-
    tron lasers," Nature Communications 4, 1731 (2013).
    [46] T.-S. Hung, C.-H. Yang, J. Wang, S. yuan Chen, J.-Y. Lin, and
    H. hsin Chu, “A 110-TW multiple-beam laser system with a 5-
    TW wavelength-tunable auxiliary beam for versatile control of
    laser-plasma interaction," Appl. Phys. B 117, 1189-1200 (2014).
    [47] W. H. Richarson, “Bayesian-Based Iterative Method of Image
    Restoration," J. Opt. Soc. Am. 62, 55-59 (1972).
    [48] L. B. Lucy, “An iterative technique for the recti_cation of ob-
    served distributions," Astronomical Journal 79, 745 (1974).
    [49] I. Christov, H. Kapteyn, and M. Murnane, “Quasi-phase match-
    ing of high-harmonics and attosecond pulses in modulated waveg-
    uides," Opt. Express 7, 362{367 (2000).
    [50] E. A. Gibson, A. Paul, N. Wagner, R. Tobey, D. Gaudiosi,
    S. Backus, I. P. Christov, A. Aquila, E. M. Gullikson, D. T.
    Attwood, M. M. Murnane, and H. C. Kapteyn, “Coherent softx-ray generation in the water window with quasi-phase match-
    ing," Science 302, 95{98 (2003).
    [51] A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P.
    Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-
    phase-matched generation of coherent extreme-ultraviolet light,"
    Nature 421, 51{54 (2003).
    [52] X. Zhang, A. Lytle, T. Popmintchev, A. Paul, N. Wagner,
    M. Murnane, and H. Kapteyn, “Phase matching, quasi-phase
    matching, and pulse compression in a single waveguide for en-
    hanced high-harmonic generation," Opt. Lett. 30, 1971{1973
    (2005).
    [53] J. Seres, V. S. Yakovlev, E. Seres, C. Streli, P. Wobrauschek,
    C. Spielmann, and F. Krausz, “Coherent superposition of laser-
    driven soft-X-ray harmonics from successive sources," Nature
    Physics 3, 878{883 (2007).
    [54] A. Pirri, C. Corsi, and M. Bellini, “Enhancing the yield of high-
    order harmonics with an array of gas jets," Phys. Rev. A 78,
    011 801 (2008).
    [55] M. Zepf, B. Dromey, M. Landreman, P. Foster, and S. M. Hooker,
    “Bright Quasi-Phase-Matched Soft-X-Ray Harmonic Radiation
    from Argon Ions," Phys. Rev. Lett. 99, 143 901 (2007).
    [56] B. Dromey, M. Zepf, M. Landreman, and S. M. Hooker, “Quasi-
    phasematching of harmonic generation via multimode beating in
    waveguides," Opt. Express 15, 7894{7900 (2007).
    [57] A. Willner, F. Tavella, M. Yeung, T. Dzelzainis, C. Kamperidis,
    M. Bakarezos, D. Adams, R. Riedel, M. Schulz, M. C. Hoffmann,
    W. Hu, J. Rossbach, M. Drescher, V. S. Yakovlev, N. A. Papado-
    giannis, M. Tatarakis, B. Dromey, and M. Zepf, “Efficient control
    of quantum paths via dual-gas high harmonic generation," New
    Journal of Physics 13, 113 001 (2011).
    [58] J. Peatross, S. Voronov, and I. Prokopovich, “Selective zoning
    of high harmonic emission using counter-propagating light," Opt.
    Express 1, 114{125 (1997).
    [59] S. L. Voronov, I. Kohl, J. B. Madsen, J. Simmons, N. Terry,
    J. Titensor, Q. Wang, and J. Peatross, “Control of Laser High-
    Harmonic Generation with Counterpropagating Light," Phys.
    Rev. Lett. 87, 133 902 (2001).
    [60] X. Zhang, A. L. Lytle, T. Popmintchev, X. Zhou, H. C. Kapteyn,
    M. M. Murnane, and O. Cohen, “Quasi-phase-matching and
    quantum-path control of high-harmonic generation using coun-
    terpropagating light," Nature Physics 3, 270{275 (2007).
    [61] A. L. Lytle, X. Zhang, J. Peatross, M. M. Murnane, H. C.
    Kapteyn, and O. Cohen, “Probe of High-Order Harmonic Gener-
    ation in a HollowWaveguide Geometry using Counterpropagating
    Light," Phys. Rev. Lett. 98, 123 904 (2007).
    [62] O. Cohen, A. L. Lytle, X. Zhang, M. M. Murnane, and H. C.
    Kapteyn, “Optimizing quasi-phase matching of high harmonic
    generation using counterpropagating pulse trains," Opt. Lett. 32,
    2975{2977 (2007).
    [63] A. L. Lytle, X. Zhang, P. Arpin, O. Cohen, M. M. Murnane,
    and H. C. Kapteyn, “Quasi-phase matching of high-order har-
    monic generation at high photon energies using counterpropagat-
    ing pulses," Opt. Lett. 33, 174{176 (2008).
    [64] A. L. Lytle, X. Zhang, R. L. Sandberg, O. Cohen, H. C. Kapteyn,
    and M. M. Murnane, “Quasi-phase matching and characteriza-
    tion of high-order harmonic generation in hollow waveguides using
    counterpropagating light," Opt. Express 16, 6544{6566 (2008).
    [65] T. Robinson, K. O'Keeffe, M. Zepf, B. Dromey, and S. M. Hooker,
    “Generation and control of ultrafast pulse trains for quasi-phase-
    matching high-harmonic generation," J. Opt. Soc. Am. B 27, 763{
    772 (2010).
    [66] K. O'Keeffe, T. Robinson, and S. M. Hooker, “Quasi-phase-
    matching high harmonic generation using trains of pulses pro-
    duced using an array of birefringent plates," Opt. Express 20,
    6236{6247 (2012).
    [67] K. O'Keeffe, D. T. Lloyd, and S. M. Hooker, “Quasi-phase-
    matched high-order harmonic generation using tunable pulse
    trains," Opt. Express 22, 7722{7732 (2014).
    [68] M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ion-
    ization of complex atoms and atomic ions in an alternating elec-
    tromagnetic _eld," Sov. Phys. JETP 64, 1191 (1986).
    [69] E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic and
    Dielectric Waveguides for Long Distance Optical Transmission
    and Lasers," Bell Syst. Tech. J. 43, 1783 (1964).
    [70] F. Dorchies, J. R. Marqu_es, B. Cros, G. Matthieussent, C. Cour-
    tois, T. V_elikoroussov, P. Audebert, J. P. Geindre, S. Rebibo,
    G. Hamoniaux, and F. Amiranoff, “Monomode Guiding of 1016
    W/cm2 Laser Pulses over 100 Rayleigh Lengths in Hollow Capil-
    lary Dielectric Tubes," Phys. Rev. Lett. 82, 4655{4658 (1999).
    [71] T. Yau, C. Lee, and J. Wang, “Femtosecond self-focusing dynam-
    ics measured by three-dimensional phase-retrieval cross correla-
    tion," JOSA B 17, 1626{1635 (2000).
    [72] Sterling Backus, Charles G. Durfee III, Margaret M. Murnane
    and Henry C. Kapteyn, “High power ultrafast lasers," Rev. Sci.
    Instrum. 69, 1207{1223 (1998).

    QR CODE
    :::