跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡孟儒
Meng-Ju Tsai
論文名稱: 硫磺礦硫化葉菌程序性細胞死亡蛋白5晶體結構分析及其與DNA的相互作用
Crystal Structure Analysis of Sulfolobus solfataricus Programmed Cell Death Protein 5 and Its Interaction with DNA
指導教授: 陳青諭
Chin-Yu Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 生命科學系
Department of Life Science
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 76
中文關鍵詞: 硫磺礦硫化葉菌程序性細胞死亡蛋白5X光繞射蛋白質結晶學DNA結合蛋白
外文關鍵詞: Sulfolobus solfataricus, the programmed cell death protein 5, crystal structure, X-ray crystallography, DNA-binding protein
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    程序性細胞死亡蛋白5 (PDCD5)在真核生物的細胞凋亡途徑中扮演著重要信號蛋白的角色,在現有的研究中,已知人類PDCD5蛋白中存在著三螺旋束和兩個游離的氮端區域,然而對於古生菌中PDCD5的研究仍尚不清楚。本研究中,我們鑑定了來自硫磺礦硫化葉菌的PDCD5同源蛋白(Sso-PDCD5),並且以1.55Å的高解析度呈現Sso-PDCD5的晶體結構,Sso-PDCD5為PDCD5同源蛋白中第一個解析出來的晶體結構,此蛋白質具有低柔韌性的緊密核心,氮端區域具有四個α-螺旋,以及具有彈性的碳端尾端。而位於碳端區域的色胺酸(W117)在激發螢光的實驗中發現色胺酸(W117)發散出的螢光可以被20bp的雙股DNA給遮蔽,螢光強度隨DNA濃度的增加而減少,這顯示Sso-PDCD5可以透過碳端尾端與DNA進行相互作用。在等溫滴定量熱的結果顯示碳端截斷蛋白(Sso-PDCD5_CTT,刪除K108-K118序列)顯著降低了與DNA結合的親和力,更進一步證明Sso-PDCD5利用動態的碳端尾端與雙股DNA進行結合。除此之外,電子顯微鏡(EM)的圖像顯示,Sso-PDCD5透過橋接的方式與雙股DNA相互作用結合。總而言之,經過結構以及生化方面的實驗數據表明Sso-PDCD5具有與雙股DNA結合的能力,是一種DNA結合蛋白。

    關鍵字:硫磺礦硫化葉菌、程序性細胞死亡蛋白5、X光繞射、蛋白質結晶學、DNA結合蛋白


    Abstract
    The Programmed Cell Death protein 5 (PDCD5) is an important signal protein of apoptosis pathway in eukaryotes. In previous research, it is known there are triple-helix bundle and two dissociated N-terminal regions in human PDCD5 protein. However, the study of PDCD5 in hyperthermophile archaea remains unclear. Here, we identify a PDCD5 homolog from Sulfolobus solfataricus (Sso_PDCD5) and present the crystal structure of Sso_PDCD5 at a high resolution of 1.55 Å. This is the first crystal structure of a PDCD5 homolog to be solved, showing that the protein has a compact core of low flexibility with four alpha-helices at N-terminal region and a flexible unstructured C-terminal tail. The fluorescence of C-terminal tryptophan (W117) can be quenched by 20 bp double-strand DNA which indicates PDCD5 may interact with DNA by the C-terminal tail. The isothermal titration calorimety (ITC) results show C-terminal truncated protein (PDCD5_CTT, detection of K108-K118) significantly reduced the DNA-binding affinity, further demonstrated that the flexible C-terminus of Sso_PDCD5 involved in binding dsDNA. In addition, Sso_PDCD5 binds dsDNA through bridging interactions as shown in electron microscopy (EM) images. In conclusion, the structural and biochemical data suggest that Sso_PDCD5 may function as a DNA-binding protein.

    Keywords: Sulfolobus solfataricus, the programmed cell death protein 5, crystal structure, X-ray crystallography, DNA-binding protein

    目錄 中文摘要……………………………………………………………….……..………………..Ⅰ 英文摘要………………………………………………………………...…………….............Ⅱ 致謝………………………………………………………………………..………………….Ⅲ 目錄…………………………………………………………………………..…………...….Ⅳ 圖目錄….………………………………………………………………………...................Ⅷ 表目錄………………………………………………………………………………………....Ⅹ 第一章 緒論………………………………………………………………………...…1 1.1人類Programmed Cell Death protein 5(Human PDCD5)…………………………………1 1.2程序性細胞死亡(Programmed Cell Death)與細胞凋亡(Apoptosis)……………….……..3 1.3硫磺礦硫化葉菌…………………………………………………………………………...5 1.4古生菌 PDCD5 (Archaea PDCD5)………………………...……………………………...5 1.5蛋白質結晶學………………………………………..…………………………………….7 1.5.1結構生物學…………………………………………………………………………7 1.5.2 X光結晶學(X-ray crystallography)………………………………………………..7 1.5.3蛋白質晶體…………………………………………………………………………7 1.5.4布拉格定律(Bragg’s law)…………………………………………………………..9 1.5.5蛋白質晶體繞射原理………………………………………………………………9 1.5.6相位角決定方法…………………………………………………..……….……...10 1.5.6.1同型置換法(isomorphous replacement method)……………………..……10 1.5.6.2分子置換法(molecular replacement)………………………………..……..10 1.5.6.3非尋常散射法(anomalous dispersion method)…………….…………...….10 1.6研究動機與目的…………………………………………...……………………………..10 第二章 研究材料與方法……………………………………………………….……12 2.1 實驗架構設計…………………………………………………………………………....12 2.2 於載體(pET-21a)建構目標基因(Sso_PDCD5)序列……………………………………12 2.2.1 於硫磺礦硫化葉菌萃取目標基因(Sso_PDCD5)序列…………………………..12 2.3於載體( pET-21a )建構目標基因Sso-PDCD5_CTT基因序列…………………………13 2.3.1硫化葉菌Sso-PDCD5基因體…………………………………………………….13 2.3.2聚合酶連鎖反應引子PCR Primer設計………………………………………….13 2.3.3確認Sso-PDCD5基因序列於E.coli (DH5α)菌株中的正確性………………….15 2.3.4聚合酶鏈鎖反應(Polymerase Chain Reaction) Sso-PDCD5_CTT……………….15 2.3.5剪切反應實驗(Digestion)…………………………………………………………17 2.3.6目標基因(Sso-PDCD5_CTT)與載體(pET-21a)黏合反應(Ligation)…..…….….. 17 2.3.7製備勝任細胞 (Competent Cell)…………………………………………………18 2.3.8轉化作用(Transformation)…………..…………………………………….………18 2.3.9菌落聚合酶鏈鎖反應(Colony PCR)……………………………………….……..19 2.3.10瓊脂糖凝膠電泳反應( Agarose gel electrophoresis )…………………………...21 2.3.11定序檢測( Sequencing )………………………………………………………….21 2.4 Sso-PDCD5蛋白質表現( Protein Expression )………………………………………….22 2.4.1篩選最佳表現條件( Time Course )……………………………………………….22 2.4.2大量表現蛋白質…………………………………………………………………..23 2.5 Sso-PDCD5蛋白質純化(Protein Purification)…………………………………………23 2.5.1超音波震盪破菌後離心……………………………………………………...…...23 2.5.2目標蛋白(Sso-PDCD5)之耐熱性…………………………………………………24 2.5.3硫酸銨沉降 (Ammonium Sulfate Precipitation)…………………………………24 2.5.3.1鹽析及沉澱法……………………………………………………………...24 2.5.3.2鹽析(salting out)……………………………………………………………24 2.5.3.3硫酸銨(Ammonia Sulfate)…………………………………………………24 2.5.4管柱純化(Fast Protein Liquid Chromatography)………………………………….25 2.5.4.1親和性純化法(Immobilized Metal Affinity Chromatography)……………25 2.5.4.2離子交換層析法(Ion Exchange Chromatography)………………………..25 2.5.4.3膠體過濾法(Size-exclusion Chromatography, Gel filtration)……………..26 2.6胺基酸序列C端剃除(C-terminal truncation)…………………………………….……...27 2.7蛋白質晶體繞射……………………………………………………………………….…27 2.7.1預長晶實驗(Pre-crystallization Test)……………………………………….……..27 2.7.2機器手臂篩選長晶條件…………………………………………………………..29 2.7.3手動長晶…………………………………………………………………………..29 2.7.4 X光繞射實驗……………………………………………………………………..29 2.8電腦軟體數據分析……………………………………………………………………….30 2.8.1 HKL2000………………………………………………………………………….30 2.8.2 CCP4i……………………………………………………………………………...30 2.8.3 Coot………………………………………………………………………………..30 2.8.4 Pymol……………………………………………………………………………...30 2.9 Sso-PDCD5_WT與Sso-PDCD5_CTT耐熱耐酸測試………………………………….30 2.10 目標蛋白質對雙股DNA的結合程度…………………………………………………32 第三章 實驗結果與討論…………………………………………………………….33 3.1建構目標基因Sso-PDCD5與Sso-PDCD5_CTT序列在pET-21a載體中…………….33 3.2篩選適合表現目標蛋白的勝任細胞與生長條件……………………………………….35 3.3 Sso-PDCD5蛋白質耐熱性………………………………………...…………………….35 3.4硫酸銨沉降Ammonium sulfate precipitation……………………...…………………….36 3.5 FPLC ( Fast Protein Liquid Chromatography ) 膠體過濾法……………………………36 3.6長晶條件篩選與上機…………………………………………….………………………39 3.6.1 Sso-PDCD5_FL長晶條件……….………………………………………………..39 3.6.2 Sso-PDCD5_CTT長晶條件………………………………………………………40 3.7繞射數據……………………….…………………………………………………………41 3.8解開PDCD5蛋白質結構的方法比較(X-ray、NMR)…………………………….…….43 3.9 Sso-PDCD5晶體結構……………………………………………………………………43 3.10 Sso-PDCD5的電性分布…………………………………….………………...………..44 3.11 Sso-PDCD5結構細節………………………………………………….………………..45 3.12 Sso-PDCD5與其同源蛋白比較………………………………………………………..46 3.13 Sso-PDCD5與其同源蛋白結構間比較……………………………………….…..…...47 3.14 Sso-PDCD5功能……………………………………………………………….……….48 3.14.1 螢光光譜Fluorescence Quenching實驗………………………………………..48 3.14.2等溫低定熱分析儀(Isothermal titration calorimetry)……………………...……49 3.14.3圓二色光譜Sso-PDCD5在高溫與低pH值的耐受度…………………………51 3.15電子顯微鏡影像分析…………………………………………………………………...53 3.16 Programmed Cell Death相關蛋白研究………………………………….……………..54 3.17未來方向………………………………………………………………………………...56 3.17.1 Sso-PDCD5與人類PDCD5訊號途徑差異……………………………………56 3.17.2 Sso-PDCD5高溫測試與雙股DNA結合能力……….…………………………57 參考文獻……………………………………………………………………………….……..58 附錄…………………………………….……………………………………………………..60   圖目錄 圖一、人類PDCD5蛋白導致細胞凋亡路徑…………………………………………….……2 圖二、細胞受到刺激進行內在途徑細胞凋亡………………………..…………………….…4 圖三、內在途徑與外在途徑細胞凋亡的不同……………….………………………………..4 圖四、a.Human PDCD5與Sso- PDCD5 DNA序列相似度…………….……………..………6 b. Human PDCD5與Sso- PDCD5胺基酸序列相似度…………..…….………………6 圖五、坐式長晶過程(蒸氣擴散法)…………………………….……………………..………8 圖六、布拉格定律原理圖……………………………………………………………..……….9 圖七、Sso-PDCD5_FL與Sso-PDCD5_CTT實驗架構…………………………….……….12 圖八、根據pET-21a基因圖篩選適當限制酶切位…………….…………………….………13 圖九、根據pET-21a全基因圖中挑選出BamHI切位……….…………………….……….14 圖十、基因定序結果,確認完整的Sso-PDCD5基因序列保存於E.coli(DH5α)載體為pET-21a中…………………………………………………………………………………….15 圖十一、Sso-PDCD5_CTT基因建構轉化至E.coli,DH5α菌株的過程………………….…19 圖十二、定序結果之Sso-PDCD5_CTT目標基因……………………………………….….22 圖十三、生產大量表現目標蛋白質(Sso-PDCD5)流程圖…………………………….……23 圖十四、膠體過濾法(Gel filtration)純化原理…………………………………………….…27 圖十五、a.輕微沉澱……………………………………………………………………….….29 b.非典型重度晶體沉澱………………………………………………....................29 圖十六、主要二級結構於圓二色光譜測得之標準圖形…………………………………….31 圖十七、Isothermal titration calorimetry等溫滴定微量熱儀示意圖………………………..32 圖十八、Sso-PDCD5_CTT 聚合酶鏈鎖反應產物………………………………………….34 圖十九、Sso-PDCD5_CTT 菌落聚合酶鏈鎖反應產物…………………………………….34 圖二十、利用NCBI網站BLAST比對Sso-PDCD5_CTT基因序列結果…………………35 圖二十一、SDS-PAGE顯示不同濃度硫酸銨沉降蛋白質(a) Sso-PDCD5_FL與 (b) Sso-PDCD5_CTT之結果…………………………………………………………………….36 圖二十二、a. Sso-PDCD5_FL膠體過濾法層析圖………………….……………….......…..37 b. SDS-PAGE確認膠體過濾純化後,Sso-PDCD5_FL蛋白質的純度……......37 圖二十三、a. Sso-PDCD5_CTT膠體過濾法層析圖………………………......………...…..38 b. SDS-PAGE確認膠體過濾純化後,Sso-PDCD5_CTT蛋白質的純度……...37 圖二十四、Sso-PDCD5的整體結構…………………………………………….…………..44 圖二十五、 Sso-PDCD5靜電表面電位……………………………………………………..45 圖二十六、Sso-PDCD5結構細節………………………….……………………………..….45 圖二十七、參與Sso-PDCD5橫截面鹽橋的胺基酸……………………………………...…46 圖二十八、PDCD5同源蛋白多序列比對…………………………….……………………..47 圖二十九、PDCD5代表性同源蛋白的NMR結構………………….…………………...….47 圖三十、Sso-PDCD5與其他PDCD5同源蛋白結構疊加圖……………………………..….48 圖三十一、a. Sso-PDCD5色胺酸 (W117) 螢光強度受DNA作用而逐次減弱之光譜….49 b. 色胺酸 (W117) 相對螢光強度隨DNA濃度之變化關係圖………………..49 圖三十二、a. Sso-PDCD5_FL滴定雙股DNA的等溫滴定量熱法結果…….………...……50 b. Sso-PDCD5_CTT滴定滴定雙股DNA的等溫滴定量熱法結果……...……50 圖三十三、Sso-PDCD5_FL變溫 (a) 與變pH (b) 的圓二色光譜以及Sso-PDCD5_CTT變溫(c)的圓二色光譜…………………………………………………..…………………...….53 圖三十四、DNA結合蛋白與DNA作用時的構型示意圖………………………………....53 圖三十五、Sso-PDCD5_FL與DNA作用的電子顯微鏡影像圖…………….…..…...….….54   表目錄 表一、Sso-PDCD5_CTT聚合酶鏈鎖反應所需材料與反應條件參數……………………...16 a. 聚合酶鏈鎖反應所需材料……………………………………..…………………16 b. 聚合酶鏈鎖反應條件參數…………………………………....……….………….16 表二、剪切反應所需材料與比例…………………………………………………….………17 表三、黏合反應實驗步驟……………………………………………………………….……18 表四、Sso-PDCD5_CTT菌落聚合酶鏈鎖反應所需材料與反應條件參數...............………20 a. 菌落聚合酶鏈鎖反應所需材料………………………………….………….……20 b. 菌落聚合酶鏈鎖反應條件參數…………….…………………………………….20 表五、50X TAE Buffer配方…………………………………………………………….……21 表六、PCT試劑成分…………………………………………………………………….……28 表七、預長晶濃度測試表………………………………………………………….................28 表八、自動點晶儀篩選出Sso-PDCD5_FL長晶條件與晶體照片……………...…………..39 表九、手動優化Sso-PDCD5_FL蛋白質晶體的條件……………….……….…………..….40 表十、自動點晶儀篩選出Sso-PDCD5_CTT長晶條件與晶體照片…………………..……41 表十一、Sso-PDCD5_FL與Sso-PDCD5_CTT的X-ray繞射數據……………….……...….42 表十二、Programmed Cell Death相關蛋白及其別名與功能性質描述………….……..…..55

    參考文獻
    1. Chen Y., Sun R., Han W., Zhang Y., Song Q., Di C., and Ma D. (2001). “Nuclear translocation of PDCD5 (TFAR19): an early signal for apoptosis?” FEBS Lett.
    509(2):191-196
    2. Li P., Fei H., Wang L., Xu H., Zhang H., and Zhang L. (2018). “PDCD5 regulates cell proliferation, cell cycle progression and apoptosis.” Oncol Lett.15(1), 1177-1183
    3. Li, G., D. Ma and Y. Chen (2016). “Cellular functions of programmed cell death 5.” Biochim. Biophys. Acta 1863(4):572-580
    4. Salvi, M., D. Xu, Y. Chen, A. Cabrelle, S. Sarno and L. A. Pinna (2009). “Programmed cell death 5 (PDCD5) is phosphorylated by CK2 in vitro and in 293T cells.” Biochem Biophys Res Commun 387(3):606-610
    5. Zhuge C., Sun X., Chen Y., and Lei J (2016). “PDCD5 functions as a regulator of p53 dynamics in the DNA damage response.” J Theor Biol. 388:1-10
    6. Thomas Ulas., S. Alexander Riemer., Melanie Zaparty., Bettina Siebers., and Dietmar Schomburg (2012). “Genome-Scale Reconstruction and Analysis of the Metabolic Network in the Hyperthermophilic Archaeon Sulfolobus Solfataricus.” PLoS One. 7(8): 43401
    7. Hong, J., J. Zhang, Z. Liu, S. Qin, J. Wu and Y. Shi (2009). “Solution structure of S.cerevisiae PDCD5-like protein and its promoting role in H(2)O(2)-induced apoptosis in yeast.” Biochemistry 48(29):6824-6834
    8. Reiter J., Herker E., Madeo F., and Schmitt MJ (2005). “Viral killer toxins induce caspase-mediated apoptosis in yeast.” J Cell Biol. 168(3):353-358
    9. Ivanovska I., and Hardwick JM (2005). “Viruses activate a genetically conserved cell death pathway in a unicellular organism.” J Cell Biol. 170(3):391-399

    10. Suarez MF., Filonova LH., Smertenko A., Savenkov EI., Clapham DH., von Arnold S., Zhivotovsky B., and Bozhkov PV (2004). “Metacaspase-dependent programmed cell death is essential for plant embryogenesis.” Curr Biol. 14(9):R339-340
    11. Yang H., Ren Q., and Zhang Z (2008). “Cleavage of Mcd1 by caspase-like protease Esp1 promotes apoptosis in budding yeast.” Mol Biol Cell. 19(5):2127-2134
    12. Fuchs Y., and Steller H (2015). “Live to die another way: modes of programmed cell death and the signals emanating from dying cells.” Nat Rev Mol Cell Biol. 16(6):329-344
    13. Swamy MJ., Sankhala RS., and Singh BP (2019). “Thermodynamic Analysis of Protein-Lipid Interactions by Isothermal Titration Calorimetry.” Methods Mol Biol. 2003:71-89
    14. Matsuo K., and Gekko K (2019). “Circular-Dichroism and Synchrotron-Radiation Circular-Dichroism Spectroscopy as Tools to Monitor Protein Structure in a Lipid Environment.” Methods Mol Biol. 2003:253-279
    15. Zhuge C., Sun X., Chen Y., and Lei J (2016). “Corrigendum to ''PDCD5 interacts with p53 and functions as a regulator of p53 dynamics in the DNA damage response.” J Theor Biol. 396:210
    16. Zhao H., Peng C., Lu X., Guo M., Yang T., Zhou J., and Hai Y (2019). “PDCD5 inhibits osteosarcoma cell metastasis via targeting TGF-β1/Smad signaling pathway and is associated with good prognosis.” Am J Transl Res. 11(2):1116-1128
    17. Lin KF., Hsu JY., Hsieh DL., Tsai MJ., Yeh CH., and Chen CY (2019). “Crystal structure of the programmed cell death 5 protein from Sulfolobus solfataricus.” Acta Crystallogr F Struct Biol Commun. 75(Pt 2):73-79
    18. Zhou Z., Jian J., Wang Z., Hu J., and Liu W. (2015).J Int Oncol Vol.42, No.5

    QR CODE
    :::