| 研究生: |
阮書嫻 Nguyen Thi Thai Hien |
|---|---|
| 論文名稱: | Development of periodic nanostructure substrates for the applications of SERS and water-splitting |
| 指導教授: |
洪緯璿
Wei-Hsuan Hung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 高熵陶瓷(HEC) 、陽極氧化鋁(AAO) 、光伏效應 、表面增强拉曼散射 (SERS) 、尖晶石結構電催化 |
| 外文關鍵詞: | High entropy ceramics (HECs), anodic aluminum oxide (AAO), photoelectrochemical (PEC) and photocatalytic activity, surface-enhanced Raman scattering (SERS), spinel (CoCrFeMnNi)3O4, AuNPs, graphene |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高熵陶瓷(HECs)是一類新發現的材料,除了與高熵合金(HEA)有部分特性相似之外,它們還有非常獨特的特性,因此吸引了各種研究的特征。HEC在許多領域都表現出色各種各樣的應用,具有無窮的可能性與發展潛力。在這項工作中,尖晶石(CoCrFeMnNi)3O4以多孔陽極氧化鋁(AAO)為光陽極,合成了一種新型光催化劑可見光光譜中的大量光吸收,帶隙為2.58 eV。這個研究了HECs AAO光陽極的光響應性能。結果表明,HECs具有顯著的光電化學和光催化性能活動這一發現證明了HECs在各種應用中的多功能性及其應用特別是光催化的前景。此外,石墨烯以前曾用於各種表面增強拉曼光譜散射(SERS)應用。這項研究描述了有序金的形成多孔陽極氧化鋁(AAO)襯底上的納米顆粒(AuNP)和石墨烯。這個AuNPs電磁增強活性與石墨烯獨特性能的結合AAO存在下的物理/化學性質增強了SERS性質並使微量分析調查。將對大量作品進行比較,以說明開發中的每個組件。此外,本研究旨在填補我們研究的空白了解SERS增強機制。
High entropy ceramics (HECs) are a new class of materials that have been discovered
recently. Apart from the similarities with high entropy alloys (HEAs), they have very unique
characteristics that have attracted various studies. HECs have exhibited great performance in a
variety of applications, and the possibilities are endless. In this work, spinel (CoCrFeMnNi)3O4
was synthesized on porous anodic aluminum oxide (AAO) as a photoanode and demonstrated
substantial light absorption in the visible light spectrum with a band gap of 2.58 eV. The
photoresponse performance of the HECs-AAO photoanode for water splitting was examined.
The results indicate that the HECs have remarkable photoelectrochemical and photocatalytic
activity. This discovery demonstrates HECs' versatility in a variety of applications and their
prospects for photocatalysis in particular.
Furthermore, graphene has previously been used in a variety of surface-enhanced Raman
scattering (SERS) applications. This study describes the formation of ordered gold
nanoparticles (AuNPs) and graphene on a porous anodic aluminum oxide (AAO) substrate. The
combination of AuNPs electromagnetic enhancement activity and graphene's unique
physical/chemical properties in the presence of AAO enhances SERS properties and enables
microanalysis investigations. Numerous works will be compared to illustrate the critical role of
each component in development. Additionally, this study aims to fill in the gaps in our
understanding of the SERS enhancement mechanism.
[1] Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., . . . Chang, S. Y.
(2004). Nanostructured high‐entropy alloys with multiple principal elements: novel alloy
design concepts and outcomes. Advanced Engineering Materials, 6(5), 299-303.
[2] Mehta, A., & Sohn, Y. (2020). High Entropy and Sluggish Diffusion “Core” Effects in
Senary FCC Al–Co–Cr–Fe–Ni–Mn Alloys. ACS Combinatorial Science, 22(12), 757-767.
[3] Sarkar, A., Wang, Q., Schiele, A., Chellali, M. R., Bhattacharya, S. S., Wang, D., . . .
Breitung, B. (2019). High‐entropy oxides: fundamental aspects and electrochemical properties.
Advanced Materials, 31(26), 1806236.
[4] Oses, C., Toher, C., & Curtarolo, S. (2020). High-entropy ceramics. Nature Reviews
Materials, 5(4), 295-309.
[5] Braun, J. L., Rost, C. M., Lim, M., Giri, A., Olson, D. H., Kotsonis, G. N., . . . Hopkins, P.
E. (2018). Charge‐induced disorder controls the thermal conductivity of entropy‐stabilized
oxides. Advanced Materials, 30(51), 1805004.
[6] Gild, J., Samiee, M., Braun, J. L., Harrington, T., Vega, H., Hopkins, P. E., . . . Luo, J.
(2018). High-entropy fluorite oxides. Journal of the European Ceramic Society, 38(10), 3578-
3584.
[7] Chen, H., Lin, W., Zhang, Z., Jie, K., Mullins, D. R., Sang, X., . . . Hu, X. (2019).
Mechanochemical synthesis of high entropy oxide materials under ambient conditions:
Dispersion of catalysts via entropy maximization. ACS Materials Letters, 1(1), 83-88.
[8] Wang, D., Liu, Z., Du, S., Zhang, Y., Li, H., Xiao, Z., . . . Zou, Y. (2019). Low-temperature
synthesis of small-sized high-entropy oxides for water oxidation. Journal of Materials
Chemistry A, 7(42), 24211-24216.
[9] Yang, J. X., Dai, B.-H., Chiang, C.-Y., Chiu, I.-C., Pao, C.-W., Lu, S.-Y., . . . Yeh, J.-W.
(2021). Rapid Fabrication of High-Entropy Ceramic Nanomaterials for Catalytic Reactions.
ACS nano, 15(7), 12324-12333.
[10] Cheng, B., Zhang, Z., & Liu, D. (2019). Dynamic Computation Offloading Based on Deep
Reinforcement Learning. Paper presented at the Mobimedia 2019: 12th EAI International
Conference on Mobile Multimedia Communications, Mobimedia 2019, 29th-30th June 2019,
Weihai, China.
43
[11] Sarkar, A., Eggert, B., Velasco, L., Mu, X., Lill, J., Ollefs, K., . . . Brand, R. A. (2020).
Role of intermediate 4 f states in tuning the band structure of high entropy oxides. APL
materials, 8(5), 051111.
[12] Mao, A., Xiang, H.-Z., Zhang, Z.-G., Kuramoto, K., Zhang, H., & Jia, Y. (2020). A new
class of spinel high-entropy oxides with controllable magnetic properties. Journal of
Magnetism and Magnetic Materials, 497, 165884.
[13] Witte, R., Sarkar, A., Kruk, R., Eggert, B., Brand, R. A., Wende, H., & Hahn, H. (2019).
High-entropy oxides: An emerging prospect for magnetic rare-earth transition metal
perovskites. Physical Review Materials, 3(3), 034406.
[14] Zhang, J., Yan, J., Calder, S., Zheng, Q., McGuire, M. A., Abernathy, D. L., . . . Zheng, H.
(2019). Long-range antiferromagnetic order in a rocksalt high entropy oxide. Chemistry of
Materials, 31(10), 3705-3711.
[15] Qiu, N., Chen, H., Yang, Z., Sun, S., Wang, Y., & Cui, Y. (2019). A high entropy oxide
(Mg0. 2Co0. 2Ni0. 2Cu0. 2Zn0. 2O) with superior lithium storage performance. Journal of
Alloys and Compounds, 777, 767-774.
[16] Sarkar, A., Velasco, L., Wang, D., Wang, Q., Talasila, G., de Biasi, L., . . . Hahn, H. (2018).
High entropy oxides for reversible energy storage. Nature communications, 9(1), 1-9.
[17] Wang, Q., Sarkar, A., Li, Z., Lu, Y., Velasco, L., Bhattacharya, S. S., . . . Breitung, B.
(2019). High entropy oxides as anode material for Li-ion battery applications: A practical
approach. Electrochemistry Communications, 100, 121-125.
[18] Ran, J., Zhang, J., Yu, J., Jaroniec, M., & Qiao, S. Z. (2014). Earth-abundant cocatalysts
for semiconductor-based photocatalytic water splitting. Chemical Society Reviews, 43(22),
7787-7812.
[19] Son, J.-H., Wang, J., & Casey, W. H. (2014). Structure, stability and photocatalytic H 2
production by Cr-, Mn-, Fe-, Co-, and Ni-substituted decaniobate clusters. Dalton Transactions,
43(48), 17928-17933.
[20] Zhong, S., Xi, Y., Wu, S., Liu, Q., Zhao, L., & Bai, S. (2020). Hybrid cocatalysts in
semiconductor-based photocatalysis and photoelectrocatalysis. Journal of Materials Chemistry
A, 8(30), 14863-14894.
[21] Tsai, K.-Y., Tsai, M.-H., & Yeh, J.-W. (2013). Sluggish diffusion in Co–Cr–Fe–Mn–Ni
high-entropy alloys. Acta Materialia, 61(13), 4887-4897.
[22] Zhou, D., Chen, Z., Ehara, K., Nitsu, K., Tanaka, K., & Inui, H. (2021). Effects of
annealing on hardness, yield strength and dislocation structure in single crystals of the
equiatomic Cr-Mn-Fe-Co-Ni high entropy alloy. Scripta Materialia, 191, 173-178.
44
[23] Restaino, S. M., & White, I. M. (2019). A critical review of flexible and porous SERS
sensors for analytical chemistry at the point-of-sample. Analytica chimica acta, 1060, 17-29.
[24] Ling, X., Xie, L., Fang, Y., Xu, H., Zhang, H., Kong, J., . . . Liu, Z. (2010). Can graphene
be used as a substrate for Raman enhancement? Nano letters, 10(2), 553-561.
[25] Botti, S., Mezi, L., Rufoloni, A., Vannozzi, A., Bollanti, S., & Flora, F. (2019). Extreme
Ultraviolet Generation of Localized Defects in Single-Layer Graphene: Raman Mapping,
Atomic Force Microscopy, and High-Resolution Scanning Electron Microscopy Analysis. ACS
Applied Electronic Materials, 1(12), 2560-2565.
[26] Liu, Y.-J., Chu, H. Y., & Zhao, Y.-P. (2010). Silver nanorod array substrates fabricated by
oblique angle deposition: morphological, optical, and SERS characterizations. The Journal of
Physical Chemistry C, 114(18), 8176-8183.
[27] Poinern, G. E. J., Ali, N., & Fawcett, D. (2011). Progress in nano-engineered anodic
aluminum oxide membrane development. Materials, 4(3), 487-526.
[28] Velleman, L., Bruneel, J.-L., Guillaume, F., Losic, D., & Shapter, J. G. (2011). Raman
spectroscopy probing of self-assembled monolayers inside the pores of gold nanotube
membranes. Physical Chemistry Chemical Physics, 13(43), 19587-19593.
[29] Shan, D., Huang, L., Li, X., Zhang, W., Wang, J., Cheng, L., . . . Zhang, Y. (2014). Surface
plasmon resonance and interference coenhanced SERS substrate of AAO/Al-based Ag
nanostructure arrays. The Journal of Physical Chemistry C, 118(41), 23930-23936.
[30] Zhang, R.-Z., & Reece, M. J. (2019). Review of high entropy ceramics: design, synthesis,
structure and properties. Journal of Materials Chemistry A, 7(39), 22148-22162.
[31] Sarkar, A., Breitung, B., & Hahn, H. (2020). High entropy oxides: the role of entropy,
enthalpy and synergy. Scripta Materialia, 187, 43-48.
[32] Sarkar, A., Djenadic, R., Wang, D., Hein, C., Kautenburger, R., Clemens, O., & Hahn, H.
(2018). Rare earth and transition metal based entropy stabilised perovskite type oxides. Journal
of the European Ceramic Society, 38(5), 2318-2327.
[33] Sarkar, A., Loho, C., Velasco, L., Thomas, T., Bhattacharya, S. S., Hahn, H., & Djenadic,
R. (2017). Multicomponent equiatomic rare earth oxides with a narrow band gap and associated
praseodymium multivalency. Dalton Transactions, 46(36), 12167-12176.
[34] Osenciat, N., Bérardan, D., Dragoe, D., Leridon, B., Holé, S., Meena, A. K., . . . Dragoe,
N. (2019). Charge compensation mechanisms in Li ‐substituted high‐entropy oxides and
influence on Li superionic conductivity. Journal of the American Ceramic Society, 102(10),
6156-6162.
45
[35] Bérardan, D., Franger, S., Meena, A., & Dragoe, N. (2016). Room temperature lithium
superionic conductivity in high entropy oxides. Journal of Materials Chemistry A, 4(24), 9536-
9541.
[36] Zhang, Y., Zuo, T. T., Tang, Z., Gao, M. C., Dahmen, K. A., Liaw, P. K., & Lu, Z. P.
(2014). Microstructures and properties of high-entropy alloys. Progress in materials science,
61, 1-93.
[37] Hsieh, M.-H., Tsai, M.-H., Shen, W.-J., & Yeh, J.-W. (2013). Structure and properties of
two Al–Cr–Nb–Si–Ti high-entropy nitride coatings. Surface and Coatings Technology, 221,
118-123.
[38] Yeh, J.-W., Chang, S.-Y., Hong, Y.-D., Chen, S.-K., & Lin, S.-J. (2007). Anomalous
decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multiprincipal elements. Materials chemistry and physics, 103(1), 41-46.
[39] Zhou, Y., Zhang, Y., Wang, Y., & Chen, G. (2007). Solid solution alloys of Al Co Cr Fe
Ni Ti x with excellent room-temperature mechanical properties. Applied physics letters, 90(18),
181904.
[40] Wang, X., Zhang, Y., Qiao, Y., & Chen, G. (2007). Novel microstructure and properties
of multicomponent CoCrCuFeNiTix alloys. Intermetallics, 15(3), 357-362.
[41] Singh, S., Wanderka, N., Murty, B., Glatzel, U., & Banhart, J. (2011). Decomposition in
multi-component AlCoCrCuFeNi high-entropy alloy. Acta Materialia, 59(1), 182-190.
[42] Castle, E., Csanádi, T., Grasso, S., Dusza, J., & Reece, M. (2018). Processing and
properties of high-entropy ultra-high temperature carbides. Scientific reports, 8(1), 1-12.
[43] Ameta, R., & Ameta, S. C. (2016). Photocatalysis: principles and applications: Crc Press.
[44] Lianos, P. (2011). Production of electricity and hydrogen by photocatalytic degradation of
organic wastes in a photoelectrochemical cell: the concept of the photofuelcell: a review of a
re-emerging research field. Journal of Hazardous Materials, 185(2-3), 575-590.
[45] Iwasaki, M., Hara, M., Kawada, H., Tada, H., & Ito, S. (2000). Cobalt ion-doped TiO2
photocatalyst response to visible light. Journal of Colloid and Interface Science, 224(1), 202-
204.
[46] Ohno, T., Mitsui, T., & Matsumura, M. (2003). Photocatalytic activity of S-doped TiO2
photocatalyst under visible light. Chemistry letters, 32(4), 364-365.
[47] Wang, X., Meng, S., Zhang, X., Wang, H., Zhong, W., & Du, Q. (2007). Multi-type carbon
doping of TiO2 photocatalyst. Chemical Physics Letters, 444(4-6), 292-296.
[48] Ding, B., Kim, H., Kim, C., Khil, M., & Park, S. (2003). Morphology and crystalline phase
study of electrospun TiO2–SiO2 nanofibres. Nanotechnology, 14(5), 532.
46
[49] Zhang, X., Zhang, T., Ng, J., & Sun, D. D. (2009). High‐performance multifunctional
TiO2 nanowire ultrafiltration membrane with a hierarchical layer structure for water treatment.
Advanced Functional Materials, 19(23), 3731-3736.
[50] Liu, Z., Zhang, X., Nishimoto, S., Murakami, T., & Fujishima, A. (2008). Efficient
photocatalytic degradation of gaseous acetaldehyde by highly ordered TiO2 nanotube arrays.
Environmental science & technology, 42(22), 8547-8551.
[51] Zhang, X., & Lei, L. (2008). Effect of preparation methods on the structure and catalytic
performance of TiO2/AC photocatalysts. Journal of Hazardous Materials, 153(1-2), 827-833.
[52] Hung, W.-H., Chien, T.-M., Lo, A.-Y., Tseng, C.-M., & Li, D. (2014). Spatially
controllable plasmon enhanced water splitting photocurrent in Au/TiO 2–Fe 2 O 3 cocatalyst
system. RSC advances, 4(86), 45710-45714.
[53] Hung, W.-H., Chien, T.-M., & Tseng, C.-M. (2014). Enhanced photocatalytic water
splitting by plasmonic TiO2–Fe2O3 cocatalyst under visible light irradiation. The Journal of
Physical Chemistry C, 118(24), 12676-12681.
[54] Hung, W.-H., Teng, Y.-J., Tseng, C.-M., & Nguyen, H. T. T. (2021). Enhanced Patterned
Cocatalyst TiO 2/Fe 2 O 3 Photoanodes for Water-Splitting. Nanoscale research letters, 16(1),
1-7.
[55] Sharma, B., Frontiera, R. R., Henry, A.-I., Ringe, E., & Van Duyne, R. P. (2012). SERS:
Materials, applications, and the future. Materials today, 15(1-2), 16-25.
[56] Xu, W., Mao, N., & Zhang, J. (2013). Graphene: a platform for surface‐enhanced Raman
spectroscopy. Small, 9(8), 1206-1224.
[57] Demirel, G., Usta, H., Yilmaz, M., Celik, M., Alidagi, H. A., & Buyukserin, F. (2018).
Surface-enhanced Raman spectroscopy (SERS): an adventure from plasmonic metals to organic
semiconductors as SERS platforms. Journal of Materials Chemistry C, 6(20), 5314-5335.
[58] Daniel, M.-C., & Astruc, D. (2004). Gold nanoparticles: assembly, supramolecular
chemistry, quantum-size-related properties, and applications toward biology, catalysis, and
nanotechnology. Chemical reviews, 104(1), 293-346.
[59] Lee, S. Y., Hung, L., Lang, G. S., Cornett, J. E., Mayergoyz, I. D., & Rabin, O. (2010).
Dispersion in the SERS enhancement with silver nanocube dimers. ACS nano, 4(10), 5763-
5772.
[60] McLellan, J. M., Li, Z.-Y., Siekkinen, A. R., & Xia, Y. (2007). The SERS activity of a
supported Ag nanocube strongly depends on its orientation relative to laser polarization. Nano
letters, 7(4), 1013-1017.
47
[61] Alvarez-Puebla, R. A., Zubarev, E. R., Kotov, N. A., & Liz-Marzán, L. M. (2012). Selfassembled nanorod supercrystals for ultrasensitive SERS diagnostics. Nano Today, 7(1), 6-9.
[62] Shanmukh, S., Jones, L., Driskell, J., Zhao, Y., Dluhy, R., & Tripp, R. A. (2006). Rapid
and sensitive detection of respiratory virus molecular signatures using a silver nanorod array
SERS substrate. Nano letters, 6(11), 2630-2636.
[63] Wang, Y., Lee, K., & Irudayaraj, J. (2010). Silver nanosphere SERS probes for sensitive
identification of pathogens. The Journal of Physical Chemistry C, 114(39), 16122-16128.
[64] Litti, L., & Meneghetti, M. (2019). Predictions on the SERS enhancement factor of gold
nanosphere aggregate samples. Physical Chemistry Chemical Physics, 21(28), 15515-15522.
[65] Scarabelli, L., Coronado-Puchau, M., Giner-Casares, J. J., Langer, J., & Liz-Marzan, L. M.
(2014). Monodisperse gold nanotriangles: size control, large-scale self-assembly, and
performance in surface-enhanced Raman scattering. ACS nano, 8(6), 5833-5842.
[66] Geng, X., Leng, W., Carter, N. A., Vikesland, P. J., & Grove, T. Z. (2016). Protein-aided
formation of triangular silver nanoprisms with enhanced SERS performance. Journal of
Materials Chemistry B, 4(23), 4182-4190.
[67] Indrasekara, A. D. S., Meyers, S., Shubeita, S., Feldman, L., Gustafsson, T., & Fabris, L.
(2014). Gold nanostar substrates for SERS-based chemical sensing in the femtomolar regime.
Nanoscale, 6(15), 8891-8899.
[68] Ma, W., Sun, M., Xu, L., Wang, L., Kuang, H., & Xu, C. (2013). A SERS active gold
nanostar dimer for mercury ion detection. Chemical communications, 49(44), 4989-4991.
[69] He, S., Chua, J., Tan, E. K. M., & Kah, J. C. Y. (2017). Optimizing the SERS enhancement
of a facile gold nanostar immobilized paper-based SERS substrate. RSC advances, 7(27),
16264-16272.
[70] Xu, Y., Kutsanedzie, F. Y., Hassan, M. M., Zhu, J., Li, H., & Chen, Q. (2020).
Functionalized hollow Au@ Ag nanoflower SERS matrix for pesticide sensing in food. Sensors
and Actuators B: Chemical, 324, 128718.
[71] Xie, J., Zhang, Q., Lee, J. Y., & Wang, D. I. (2008). The synthesis of SERS-active gold
nanoflower tags for in vivo applications. ACS nano, 2(12), 2473-2480.
[72] Zhao, Y., Yang, X., Li, H., Luo, Y., Yu, R., Zhang, L., . . . Song, Q. (2015). Au nanoflower–
Ag nanoparticle assembled SERS-active substrates for sensitive MC-LR detection. Chemical
communications, 51(95), 16908-16911.
[73] Li, J.-F., Zhang, Y.-J., Ding, S.-Y., Panneerselvam, R., & Tian, Z.-Q. (2017). Core–shell
nanoparticle-enhanced Raman spectroscopy. Chemical reviews, 117(7), 5002-5069.
48
[74] Lim, D.-K., Jeon, K.-S., Kim, H. M., Nam, J.-M., & Suh, Y. D. (2010). Nanogapengineerable Raman-active nanodumbbells for single-molecule detection. Nature materials,
9(1), 60-67.
[75] Lim, D.-K., Jeon, K.-S., Hwang, J.-H., Kim, H., Kwon, S., Suh, Y. D., & Nam, J.-M.
(2011). Highly uniform and reproducible surface-enhanced Raman scattering from DNAtailorable nanoparticles with 1-nm interior gap. Nature nanotechnology, 6(7), 452-460.
[76] Tyutyunnik, V. M. (2021). Graphene breakthrough into future technology: the 2010 Nobel
Prize in Physics Laureate Sir Konstantin Sergeevich Novoselov. Journal of Advanced Materials
and Technologies, 6(1), 6-9.
[77] Dresselhaus, M. S., Jorio, A., Hofmann, M., Dresselhaus, G., & Saito, R. (2010).
Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano letters, 10(3), 751-
758.
[78] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D.-e., Zhang, Y., Dubonos, S. V., . . .
Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. science, 306(5696),
666-669.
[79] Huang, J., Zhang, L., Chen, B., Ji, N., Chen, F., Zhang, Y., & Zhang, Z. (2010).
Nanocomposites of size-controlled gold nanoparticles and graphene oxide: formation and
applications in SERS and catalysis. Nanoscale, 2(12), 2733-2738.
[80] Yang, L., Lee, J.-H., Rathnam, C., Hou, Y., Choi, J.-W., & Lee, K.-B. (2019). Dualenhanced Raman scattering-based characterization of stem cell differentiation using grapheneplasmonic hybrid nanoarray. Nano letters, 19(11), 8138-8148.
[81] Liang, X., Liang, B., Pan, Z., Lang, X., Zhang, Y., Wang, G., . . . Guo, L. (2015). Tuning
plasmonic and chemical enhancement for SERS detection on graphene-based Au hybrids.
Nanoscale, 7(47), 20188-20196.
[82] Bastús, N. G., Comenge, J., & Puntes, V. (2011). Kinetically controlled seeded growth
synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald
ripening. Langmuir, 27(17), 11098-11105.
[83] Wang, S., Yu, G., Gong, J., Li, Q., Xu, H., Zhu, D., & Zhu, Z. (2006). Large-area
fabrication of periodic Fe nanorings with controllable aspect ratios in porous alumina templates.
Nanotechnology, 17(6), 1594.
[84] Dąbrowa, J., Stygar, M., Mikuła, A., Knapik, A., Mroczka, K., Tejchman, W., . . . Martin,
M. (2018). Synthesis and microstructure of the (Co, Cr, Fe, Mn, Ni) 3O4 high entropy oxide
characterized by spinel structure. Materials Letters, 216, 32-36.
49
[85] Mao, A., Xie, H.-X., Xiang, H.-Z., Zhang, Z.-G., Zhang, H., & Ran, S. (2020). A novel
six-component spinel-structure high-entropy oxide with ferrimagnetic property. Journal of
Magnetism and Magnetic Materials, 503, 166594.
[86] Dojcinovic, M. P., Vasiljevic, Z. Z., Pavlovic, V. P., Barisic, D., Pajic, D., Tadic, N. B., &
Nikolic, M. V. (2021). Mixed Mg–Co spinel ferrites: Structure, morphology, magnetic and
photocatalytic properties. Journal of Alloys and Compounds, 855, 157429.
[87] Srinivas, M. (2021). Superior photocatalytic activity of Mn-doped CoFe2O4 under visible
light irradiation: Exploration of hopping and polaron formation in the spinel structure.
Materials Science and Engineering: B, 270, 115222.
[88] Sutka, A., Millers, M., Vanags, M., Joost, U., Maiorov, M., Kisand, V., . . . Juhnevica, I.
(2015). Comparison of photocatalytic activity for different co-precipitated spinel ferrites.
Research on Chemical Intermediates, 41(12), 9439-9449.
[89] Che, Y., Lu, B., Qi, Q., Chang, H., Zhai, J., Wang, K., & Liu, Z. (2018). Bio-inspired Zscheme gC 3 N 4/Ag 2 CrO 4 for efficient visible-light photocatalytic hydrogen generation.
Scientific reports, 8(1), 1-12.
[90] Ghicov, A., Tsuchiya, H., Macak, J. M., & Schmuki, P. (2006). Annealing effects on the
photoresponse of TiO2 nanotubes. physica status solidi (a), 203(4), R28-R30.
[91] Beams, R., Cançado, L. G., & Novotny, L. (2015). Raman characterization of defects and
dopants in graphene. Journal of Physics: Condensed Matter, 27(8), 083002.
[92] López-Díaz, D., Lopez Holgado, M., García-Fierro, J. L., & Velázquez, M. M. (2017).
Evolution of the Raman spectrum with the chemical composition of graphene oxide. The
Journal of Physical Chemistry C, 121(37), 20489-20497.
[93] Gao, G., Liu, D., Tang, S., Huang, C., He, M., Guo, Y., . . . Gao, B. (2016). Heat-initiated
chemical functionalization of graphene. Scientific reports, 6(1), 1-8.