跳到主要內容

簡易檢索 / 詳目顯示

研究生: 阮書嫻
Nguyen Thi Thai Hien
論文名稱: Development of periodic nanostructure substrates for the applications of SERS and water-splitting
指導教授: 洪緯璿
Wei-Hsuan Hung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
論文出版年: 2024
畢業學年度: 110
語文別: 英文
論文頁數: 49
中文關鍵詞: 高熵陶瓷(HEC)陽極氧化鋁(AAO)光伏效應表面增强拉曼散射 (SERS)尖晶石結構電催化
外文關鍵詞: High entropy ceramics (HECs), anodic aluminum oxide (AAO), photoelectrochemical (PEC) and photocatalytic activity, surface-enhanced Raman scattering (SERS), spinel (CoCrFeMnNi)3O4, AuNPs, graphene
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高熵陶瓷(HECs)是一類新發現的材料,除了與高熵合金(HEA)有部分特性相似之外,它們還有非常獨特的特性,因此吸引了各種研究的特征。HEC在許多領域都表現出色各種各樣的應用,具有無窮的可能性與發展潛力。在這項工作中,尖晶石(CoCrFeMnNi)3O4以多孔陽極氧化鋁(AAO)為光陽極,合成了一種新型光催化劑可見光光譜中的大量光吸收,帶隙為2.58 eV。這個研究了HECs AAO光陽極的光響應性能。結果表明,HECs具有顯著的光電化學和光催化性能活動這一發現證明了HECs在各種應用中的多功能性及其應用特別是光催化的前景。此外,石墨烯以前曾用於各種表面增強拉曼光譜散射(SERS)應用。這項研究描述了有序金的形成多孔陽極氧化鋁(AAO)襯底上的納米顆粒(AuNP)和石墨烯。這個AuNPs電磁增強活性與石墨烯獨特性能的結合AAO存在下的物理/化學性質增強了SERS性質並使微量分析調查。將對大量作品進行比較,以說明開發中的每個組件。此外,本研究旨在填補我們研究的空白了解SERS增強機制。


    High entropy ceramics (HECs) are a new class of materials that have been discovered
    recently. Apart from the similarities with high entropy alloys (HEAs), they have very unique
    characteristics that have attracted various studies. HECs have exhibited great performance in a
    variety of applications, and the possibilities are endless. In this work, spinel (CoCrFeMnNi)3O4
    was synthesized on porous anodic aluminum oxide (AAO) as a photoanode and demonstrated
    substantial light absorption in the visible light spectrum with a band gap of 2.58 eV. The
    photoresponse performance of the HECs-AAO photoanode for water splitting was examined.
    The results indicate that the HECs have remarkable photoelectrochemical and photocatalytic
    activity. This discovery demonstrates HECs' versatility in a variety of applications and their
    prospects for photocatalysis in particular.
    Furthermore, graphene has previously been used in a variety of surface-enhanced Raman
    scattering (SERS) applications. This study describes the formation of ordered gold
    nanoparticles (AuNPs) and graphene on a porous anodic aluminum oxide (AAO) substrate. The
    combination of AuNPs electromagnetic enhancement activity and graphene's unique
    physical/chemical properties in the presence of AAO enhances SERS properties and enables
    microanalysis investigations. Numerous works will be compared to illustrate the critical role of
    each component in development. Additionally, this study aims to fill in the gaps in our
    understanding of the SERS enhancement mechanism.

    Table of contents Chapter I Introduction ..1 Chapter II Literature Review...3 2-1. Anodic aluminum oxide (AAO).3 2-2. HECs on AAO for PEC & photocatalytic applications...3 2-2-1. The concept of HECs and their properties....3 2-2-2. Fundamental of photoelectrochemical (PEC) and photocatalytic activities for water splitting.....8 2-3. Graphene and ordered gold nanoparticles deposited on AAO substrate for SERS.......11 2-3-1. The progress of plasmonic materials on SERS .12 2-3-2. Graphene on SERS .15 Chapter III Experimental Section...0 3-1. Preparation of AAO...20 3-2. Preparation of HECs on AAO .20 3-3. Preparation of Au/Graphene on AAO ..21 3-3-1. Au nanoparticles synthesis ..21 3-3-2. Graphene dispersion ..21 3-3-3. Defect graphene dispersion ..21 3-3-4. Deposited Au/Graphene on AAO...22 3-4. Characterizations.....22 3-4-1. Field emission scanning electron microscopy (FE-SEM)..22 3-4-2. Ultraviolet–visible spectroscopy (UV-Vis)..23 3-4-3. X-ray diffraction (XRD)..24 3-4-4. Raman scattering ...25 3-4-5. Electrochemical analyzer (CHI)..26 Chapter IV Results and Discussion ..28 4-1. HECs on AAO characteristics and PEC & photocatalytic performance 28 iv 4-1-1. Structural analysis...28 4-1-2. Photoresponse for PEC & photocatalytic activity in water-splitting.....32 4-2. Characteristics and SERS performance of graphene and ordered gold nanoparticles placed on an AAO substrate .34 4-2-1. Structural analysis..34 4-2-2. SERS performance 36 Chapter V Conclusion .40 References 42

    [1] Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., . . . Chang, S. Y.
    (2004). Nanostructured high‐entropy alloys with multiple principal elements: novel alloy
    design concepts and outcomes. Advanced Engineering Materials, 6(5), 299-303.
    [2] Mehta, A., & Sohn, Y. (2020). High Entropy and Sluggish Diffusion “Core” Effects in
    Senary FCC Al–Co–Cr–Fe–Ni–Mn Alloys. ACS Combinatorial Science, 22(12), 757-767.
    [3] Sarkar, A., Wang, Q., Schiele, A., Chellali, M. R., Bhattacharya, S. S., Wang, D., . . .
    Breitung, B. (2019). High‐entropy oxides: fundamental aspects and electrochemical properties.
    Advanced Materials, 31(26), 1806236.
    [4] Oses, C., Toher, C., & Curtarolo, S. (2020). High-entropy ceramics. Nature Reviews
    Materials, 5(4), 295-309.
    [5] Braun, J. L., Rost, C. M., Lim, M., Giri, A., Olson, D. H., Kotsonis, G. N., . . . Hopkins, P.
    E. (2018). Charge‐induced disorder controls the thermal conductivity of entropy‐stabilized
    oxides. Advanced Materials, 30(51), 1805004.
    [6] Gild, J., Samiee, M., Braun, J. L., Harrington, T., Vega, H., Hopkins, P. E., . . . Luo, J.
    (2018). High-entropy fluorite oxides. Journal of the European Ceramic Society, 38(10), 3578-
    3584.
    [7] Chen, H., Lin, W., Zhang, Z., Jie, K., Mullins, D. R., Sang, X., . . . Hu, X. (2019).
    Mechanochemical synthesis of high entropy oxide materials under ambient conditions:
    Dispersion of catalysts via entropy maximization. ACS Materials Letters, 1(1), 83-88.
    [8] Wang, D., Liu, Z., Du, S., Zhang, Y., Li, H., Xiao, Z., . . . Zou, Y. (2019). Low-temperature
    synthesis of small-sized high-entropy oxides for water oxidation. Journal of Materials
    Chemistry A, 7(42), 24211-24216.
    [9] Yang, J. X., Dai, B.-H., Chiang, C.-Y., Chiu, I.-C., Pao, C.-W., Lu, S.-Y., . . . Yeh, J.-W.
    (2021). Rapid Fabrication of High-Entropy Ceramic Nanomaterials for Catalytic Reactions.
    ACS nano, 15(7), 12324-12333.
    [10] Cheng, B., Zhang, Z., & Liu, D. (2019). Dynamic Computation Offloading Based on Deep
    Reinforcement Learning. Paper presented at the Mobimedia 2019: 12th EAI International
    Conference on Mobile Multimedia Communications, Mobimedia 2019, 29th-30th June 2019,
    Weihai, China.
    43
    [11] Sarkar, A., Eggert, B., Velasco, L., Mu, X., Lill, J., Ollefs, K., . . . Brand, R. A. (2020).
    Role of intermediate 4 f states in tuning the band structure of high entropy oxides. APL
    materials, 8(5), 051111.
    [12] Mao, A., Xiang, H.-Z., Zhang, Z.-G., Kuramoto, K., Zhang, H., & Jia, Y. (2020). A new
    class of spinel high-entropy oxides with controllable magnetic properties. Journal of
    Magnetism and Magnetic Materials, 497, 165884.
    [13] Witte, R., Sarkar, A., Kruk, R., Eggert, B., Brand, R. A., Wende, H., & Hahn, H. (2019).
    High-entropy oxides: An emerging prospect for magnetic rare-earth transition metal
    perovskites. Physical Review Materials, 3(3), 034406.
    [14] Zhang, J., Yan, J., Calder, S., Zheng, Q., McGuire, M. A., Abernathy, D. L., . . . Zheng, H.
    (2019). Long-range antiferromagnetic order in a rocksalt high entropy oxide. Chemistry of
    Materials, 31(10), 3705-3711.
    [15] Qiu, N., Chen, H., Yang, Z., Sun, S., Wang, Y., & Cui, Y. (2019). A high entropy oxide
    (Mg0. 2Co0. 2Ni0. 2Cu0. 2Zn0. 2O) with superior lithium storage performance. Journal of
    Alloys and Compounds, 777, 767-774.
    [16] Sarkar, A., Velasco, L., Wang, D., Wang, Q., Talasila, G., de Biasi, L., . . . Hahn, H. (2018).
    High entropy oxides for reversible energy storage. Nature communications, 9(1), 1-9.
    [17] Wang, Q., Sarkar, A., Li, Z., Lu, Y., Velasco, L., Bhattacharya, S. S., . . . Breitung, B.
    (2019). High entropy oxides as anode material for Li-ion battery applications: A practical
    approach. Electrochemistry Communications, 100, 121-125.
    [18] Ran, J., Zhang, J., Yu, J., Jaroniec, M., & Qiao, S. Z. (2014). Earth-abundant cocatalysts
    for semiconductor-based photocatalytic water splitting. Chemical Society Reviews, 43(22),
    7787-7812.
    [19] Son, J.-H., Wang, J., & Casey, W. H. (2014). Structure, stability and photocatalytic H 2
    production by Cr-, Mn-, Fe-, Co-, and Ni-substituted decaniobate clusters. Dalton Transactions,
    43(48), 17928-17933.
    [20] Zhong, S., Xi, Y., Wu, S., Liu, Q., Zhao, L., & Bai, S. (2020). Hybrid cocatalysts in
    semiconductor-based photocatalysis and photoelectrocatalysis. Journal of Materials Chemistry
    A, 8(30), 14863-14894.
    [21] Tsai, K.-Y., Tsai, M.-H., & Yeh, J.-W. (2013). Sluggish diffusion in Co–Cr–Fe–Mn–Ni
    high-entropy alloys. Acta Materialia, 61(13), 4887-4897.
    [22] Zhou, D., Chen, Z., Ehara, K., Nitsu, K., Tanaka, K., & Inui, H. (2021). Effects of
    annealing on hardness, yield strength and dislocation structure in single crystals of the
    equiatomic Cr-Mn-Fe-Co-Ni high entropy alloy. Scripta Materialia, 191, 173-178.
    44
    [23] Restaino, S. M., & White, I. M. (2019). A critical review of flexible and porous SERS
    sensors for analytical chemistry at the point-of-sample. Analytica chimica acta, 1060, 17-29.
    [24] Ling, X., Xie, L., Fang, Y., Xu, H., Zhang, H., Kong, J., . . . Liu, Z. (2010). Can graphene
    be used as a substrate for Raman enhancement? Nano letters, 10(2), 553-561.
    [25] Botti, S., Mezi, L., Rufoloni, A., Vannozzi, A., Bollanti, S., & Flora, F. (2019). Extreme
    Ultraviolet Generation of Localized Defects in Single-Layer Graphene: Raman Mapping,
    Atomic Force Microscopy, and High-Resolution Scanning Electron Microscopy Analysis. ACS
    Applied Electronic Materials, 1(12), 2560-2565.
    [26] Liu, Y.-J., Chu, H. Y., & Zhao, Y.-P. (2010). Silver nanorod array substrates fabricated by
    oblique angle deposition: morphological, optical, and SERS characterizations. The Journal of
    Physical Chemistry C, 114(18), 8176-8183.
    [27] Poinern, G. E. J., Ali, N., & Fawcett, D. (2011). Progress in nano-engineered anodic
    aluminum oxide membrane development. Materials, 4(3), 487-526.
    [28] Velleman, L., Bruneel, J.-L., Guillaume, F., Losic, D., & Shapter, J. G. (2011). Raman
    spectroscopy probing of self-assembled monolayers inside the pores of gold nanotube
    membranes. Physical Chemistry Chemical Physics, 13(43), 19587-19593.
    [29] Shan, D., Huang, L., Li, X., Zhang, W., Wang, J., Cheng, L., . . . Zhang, Y. (2014). Surface
    plasmon resonance and interference coenhanced SERS substrate of AAO/Al-based Ag
    nanostructure arrays. The Journal of Physical Chemistry C, 118(41), 23930-23936.
    [30] Zhang, R.-Z., & Reece, M. J. (2019). Review of high entropy ceramics: design, synthesis,
    structure and properties. Journal of Materials Chemistry A, 7(39), 22148-22162.
    [31] Sarkar, A., Breitung, B., & Hahn, H. (2020). High entropy oxides: the role of entropy,
    enthalpy and synergy. Scripta Materialia, 187, 43-48.
    [32] Sarkar, A., Djenadic, R., Wang, D., Hein, C., Kautenburger, R., Clemens, O., & Hahn, H.
    (2018). Rare earth and transition metal based entropy stabilised perovskite type oxides. Journal
    of the European Ceramic Society, 38(5), 2318-2327.
    [33] Sarkar, A., Loho, C., Velasco, L., Thomas, T., Bhattacharya, S. S., Hahn, H., & Djenadic,
    R. (2017). Multicomponent equiatomic rare earth oxides with a narrow band gap and associated
    praseodymium multivalency. Dalton Transactions, 46(36), 12167-12176.
    [34] Osenciat, N., Bérardan, D., Dragoe, D., Leridon, B., Holé, S., Meena, A. K., . . . Dragoe,
    N. (2019). Charge compensation mechanisms in Li ‐substituted high‐entropy oxides and
    influence on Li superionic conductivity. Journal of the American Ceramic Society, 102(10),
    6156-6162.
    45
    [35] Bérardan, D., Franger, S., Meena, A., & Dragoe, N. (2016). Room temperature lithium
    superionic conductivity in high entropy oxides. Journal of Materials Chemistry A, 4(24), 9536-
    9541.
    [36] Zhang, Y., Zuo, T. T., Tang, Z., Gao, M. C., Dahmen, K. A., Liaw, P. K., & Lu, Z. P.
    (2014). Microstructures and properties of high-entropy alloys. Progress in materials science,
    61, 1-93.
    [37] Hsieh, M.-H., Tsai, M.-H., Shen, W.-J., & Yeh, J.-W. (2013). Structure and properties of
    two Al–Cr–Nb–Si–Ti high-entropy nitride coatings. Surface and Coatings Technology, 221,
    118-123.
    [38] Yeh, J.-W., Chang, S.-Y., Hong, Y.-D., Chen, S.-K., & Lin, S.-J. (2007). Anomalous
    decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multiprincipal elements. Materials chemistry and physics, 103(1), 41-46.
    [39] Zhou, Y., Zhang, Y., Wang, Y., & Chen, G. (2007). Solid solution alloys of Al Co Cr Fe
    Ni Ti x with excellent room-temperature mechanical properties. Applied physics letters, 90(18),
    181904.
    [40] Wang, X., Zhang, Y., Qiao, Y., & Chen, G. (2007). Novel microstructure and properties
    of multicomponent CoCrCuFeNiTix alloys. Intermetallics, 15(3), 357-362.
    [41] Singh, S., Wanderka, N., Murty, B., Glatzel, U., & Banhart, J. (2011). Decomposition in
    multi-component AlCoCrCuFeNi high-entropy alloy. Acta Materialia, 59(1), 182-190.
    [42] Castle, E., Csanádi, T., Grasso, S., Dusza, J., & Reece, M. (2018). Processing and
    properties of high-entropy ultra-high temperature carbides. Scientific reports, 8(1), 1-12.
    [43] Ameta, R., & Ameta, S. C. (2016). Photocatalysis: principles and applications: Crc Press.
    [44] Lianos, P. (2011). Production of electricity and hydrogen by photocatalytic degradation of
    organic wastes in a photoelectrochemical cell: the concept of the photofuelcell: a review of a
    re-emerging research field. Journal of Hazardous Materials, 185(2-3), 575-590.
    [45] Iwasaki, M., Hara, M., Kawada, H., Tada, H., & Ito, S. (2000). Cobalt ion-doped TiO2
    photocatalyst response to visible light. Journal of Colloid and Interface Science, 224(1), 202-
    204.
    [46] Ohno, T., Mitsui, T., & Matsumura, M. (2003). Photocatalytic activity of S-doped TiO2
    photocatalyst under visible light. Chemistry letters, 32(4), 364-365.
    [47] Wang, X., Meng, S., Zhang, X., Wang, H., Zhong, W., & Du, Q. (2007). Multi-type carbon
    doping of TiO2 photocatalyst. Chemical Physics Letters, 444(4-6), 292-296.
    [48] Ding, B., Kim, H., Kim, C., Khil, M., & Park, S. (2003). Morphology and crystalline phase
    study of electrospun TiO2–SiO2 nanofibres. Nanotechnology, 14(5), 532.
    46
    [49] Zhang, X., Zhang, T., Ng, J., & Sun, D. D. (2009). High‐performance multifunctional
    TiO2 nanowire ultrafiltration membrane with a hierarchical layer structure for water treatment.
    Advanced Functional Materials, 19(23), 3731-3736.
    [50] Liu, Z., Zhang, X., Nishimoto, S., Murakami, T., & Fujishima, A. (2008). Efficient
    photocatalytic degradation of gaseous acetaldehyde by highly ordered TiO2 nanotube arrays.
    Environmental science & technology, 42(22), 8547-8551.
    [51] Zhang, X., & Lei, L. (2008). Effect of preparation methods on the structure and catalytic
    performance of TiO2/AC photocatalysts. Journal of Hazardous Materials, 153(1-2), 827-833.
    [52] Hung, W.-H., Chien, T.-M., Lo, A.-Y., Tseng, C.-M., & Li, D. (2014). Spatially
    controllable plasmon enhanced water splitting photocurrent in Au/TiO 2–Fe 2 O 3 cocatalyst
    system. RSC advances, 4(86), 45710-45714.
    [53] Hung, W.-H., Chien, T.-M., & Tseng, C.-M. (2014). Enhanced photocatalytic water
    splitting by plasmonic TiO2–Fe2O3 cocatalyst under visible light irradiation. The Journal of
    Physical Chemistry C, 118(24), 12676-12681.
    [54] Hung, W.-H., Teng, Y.-J., Tseng, C.-M., & Nguyen, H. T. T. (2021). Enhanced Patterned
    Cocatalyst TiO 2/Fe 2 O 3 Photoanodes for Water-Splitting. Nanoscale research letters, 16(1),
    1-7.
    [55] Sharma, B., Frontiera, R. R., Henry, A.-I., Ringe, E., & Van Duyne, R. P. (2012). SERS:
    Materials, applications, and the future. Materials today, 15(1-2), 16-25.
    [56] Xu, W., Mao, N., & Zhang, J. (2013). Graphene: a platform for surface‐enhanced Raman
    spectroscopy. Small, 9(8), 1206-1224.
    [57] Demirel, G., Usta, H., Yilmaz, M., Celik, M., Alidagi, H. A., & Buyukserin, F. (2018).
    Surface-enhanced Raman spectroscopy (SERS): an adventure from plasmonic metals to organic
    semiconductors as SERS platforms. Journal of Materials Chemistry C, 6(20), 5314-5335.
    [58] Daniel, M.-C., & Astruc, D. (2004). Gold nanoparticles: assembly, supramolecular
    chemistry, quantum-size-related properties, and applications toward biology, catalysis, and
    nanotechnology. Chemical reviews, 104(1), 293-346.
    [59] Lee, S. Y., Hung, L., Lang, G. S., Cornett, J. E., Mayergoyz, I. D., & Rabin, O. (2010).
    Dispersion in the SERS enhancement with silver nanocube dimers. ACS nano, 4(10), 5763-
    5772.
    [60] McLellan, J. M., Li, Z.-Y., Siekkinen, A. R., & Xia, Y. (2007). The SERS activity of a
    supported Ag nanocube strongly depends on its orientation relative to laser polarization. Nano
    letters, 7(4), 1013-1017.
    47
    [61] Alvarez-Puebla, R. A., Zubarev, E. R., Kotov, N. A., & Liz-Marzán, L. M. (2012). Selfassembled nanorod supercrystals for ultrasensitive SERS diagnostics. Nano Today, 7(1), 6-9.
    [62] Shanmukh, S., Jones, L., Driskell, J., Zhao, Y., Dluhy, R., & Tripp, R. A. (2006). Rapid
    and sensitive detection of respiratory virus molecular signatures using a silver nanorod array
    SERS substrate. Nano letters, 6(11), 2630-2636.
    [63] Wang, Y., Lee, K., & Irudayaraj, J. (2010). Silver nanosphere SERS probes for sensitive
    identification of pathogens. The Journal of Physical Chemistry C, 114(39), 16122-16128.
    [64] Litti, L., & Meneghetti, M. (2019). Predictions on the SERS enhancement factor of gold
    nanosphere aggregate samples. Physical Chemistry Chemical Physics, 21(28), 15515-15522.
    [65] Scarabelli, L., Coronado-Puchau, M., Giner-Casares, J. J., Langer, J., & Liz-Marzan, L. M.
    (2014). Monodisperse gold nanotriangles: size control, large-scale self-assembly, and
    performance in surface-enhanced Raman scattering. ACS nano, 8(6), 5833-5842.
    [66] Geng, X., Leng, W., Carter, N. A., Vikesland, P. J., & Grove, T. Z. (2016). Protein-aided
    formation of triangular silver nanoprisms with enhanced SERS performance. Journal of
    Materials Chemistry B, 4(23), 4182-4190.
    [67] Indrasekara, A. D. S., Meyers, S., Shubeita, S., Feldman, L., Gustafsson, T., & Fabris, L.
    (2014). Gold nanostar substrates for SERS-based chemical sensing in the femtomolar regime.
    Nanoscale, 6(15), 8891-8899.
    [68] Ma, W., Sun, M., Xu, L., Wang, L., Kuang, H., & Xu, C. (2013). A SERS active gold
    nanostar dimer for mercury ion detection. Chemical communications, 49(44), 4989-4991.
    [69] He, S., Chua, J., Tan, E. K. M., & Kah, J. C. Y. (2017). Optimizing the SERS enhancement
    of a facile gold nanostar immobilized paper-based SERS substrate. RSC advances, 7(27),
    16264-16272.
    [70] Xu, Y., Kutsanedzie, F. Y., Hassan, M. M., Zhu, J., Li, H., & Chen, Q. (2020).
    Functionalized hollow Au@ Ag nanoflower SERS matrix for pesticide sensing in food. Sensors
    and Actuators B: Chemical, 324, 128718.
    [71] Xie, J., Zhang, Q., Lee, J. Y., & Wang, D. I. (2008). The synthesis of SERS-active gold
    nanoflower tags for in vivo applications. ACS nano, 2(12), 2473-2480.
    [72] Zhao, Y., Yang, X., Li, H., Luo, Y., Yu, R., Zhang, L., . . . Song, Q. (2015). Au nanoflower–
    Ag nanoparticle assembled SERS-active substrates for sensitive MC-LR detection. Chemical
    communications, 51(95), 16908-16911.
    [73] Li, J.-F., Zhang, Y.-J., Ding, S.-Y., Panneerselvam, R., & Tian, Z.-Q. (2017). Core–shell
    nanoparticle-enhanced Raman spectroscopy. Chemical reviews, 117(7), 5002-5069.
    48
    [74] Lim, D.-K., Jeon, K.-S., Kim, H. M., Nam, J.-M., & Suh, Y. D. (2010). Nanogapengineerable Raman-active nanodumbbells for single-molecule detection. Nature materials,
    9(1), 60-67.
    [75] Lim, D.-K., Jeon, K.-S., Hwang, J.-H., Kim, H., Kwon, S., Suh, Y. D., & Nam, J.-M.
    (2011). Highly uniform and reproducible surface-enhanced Raman scattering from DNAtailorable nanoparticles with 1-nm interior gap. Nature nanotechnology, 6(7), 452-460.
    [76] Tyutyunnik, V. M. (2021). Graphene breakthrough into future technology: the 2010 Nobel
    Prize in Physics Laureate Sir Konstantin Sergeevich Novoselov. Journal of Advanced Materials
    and Technologies, 6(1), 6-9.
    [77] Dresselhaus, M. S., Jorio, A., Hofmann, M., Dresselhaus, G., & Saito, R. (2010).
    Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano letters, 10(3), 751-
    758.
    [78] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D.-e., Zhang, Y., Dubonos, S. V., . . .
    Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. science, 306(5696),
    666-669.
    [79] Huang, J., Zhang, L., Chen, B., Ji, N., Chen, F., Zhang, Y., & Zhang, Z. (2010).
    Nanocomposites of size-controlled gold nanoparticles and graphene oxide: formation and
    applications in SERS and catalysis. Nanoscale, 2(12), 2733-2738.
    [80] Yang, L., Lee, J.-H., Rathnam, C., Hou, Y., Choi, J.-W., & Lee, K.-B. (2019). Dualenhanced Raman scattering-based characterization of stem cell differentiation using grapheneplasmonic hybrid nanoarray. Nano letters, 19(11), 8138-8148.
    [81] Liang, X., Liang, B., Pan, Z., Lang, X., Zhang, Y., Wang, G., . . . Guo, L. (2015). Tuning
    plasmonic and chemical enhancement for SERS detection on graphene-based Au hybrids.
    Nanoscale, 7(47), 20188-20196.
    [82] Bastús, N. G., Comenge, J., & Puntes, V. (2011). Kinetically controlled seeded growth
    synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald
    ripening. Langmuir, 27(17), 11098-11105.
    [83] Wang, S., Yu, G., Gong, J., Li, Q., Xu, H., Zhu, D., & Zhu, Z. (2006). Large-area
    fabrication of periodic Fe nanorings with controllable aspect ratios in porous alumina templates.
    Nanotechnology, 17(6), 1594.
    [84] Dąbrowa, J., Stygar, M., Mikuła, A., Knapik, A., Mroczka, K., Tejchman, W., . . . Martin,
    M. (2018). Synthesis and microstructure of the (Co, Cr, Fe, Mn, Ni) 3O4 high entropy oxide
    characterized by spinel structure. Materials Letters, 216, 32-36.
    49
    [85] Mao, A., Xie, H.-X., Xiang, H.-Z., Zhang, Z.-G., Zhang, H., & Ran, S. (2020). A novel
    six-component spinel-structure high-entropy oxide with ferrimagnetic property. Journal of
    Magnetism and Magnetic Materials, 503, 166594.
    [86] Dojcinovic, M. P., Vasiljevic, Z. Z., Pavlovic, V. P., Barisic, D., Pajic, D., Tadic, N. B., &
    Nikolic, M. V. (2021). Mixed Mg–Co spinel ferrites: Structure, morphology, magnetic and
    photocatalytic properties. Journal of Alloys and Compounds, 855, 157429.
    [87] Srinivas, M. (2021). Superior photocatalytic activity of Mn-doped CoFe2O4 under visible
    light irradiation: Exploration of hopping and polaron formation in the spinel structure.
    Materials Science and Engineering: B, 270, 115222.
    [88] Sutka, A., Millers, M., Vanags, M., Joost, U., Maiorov, M., Kisand, V., . . . Juhnevica, I.
    (2015). Comparison of photocatalytic activity for different co-precipitated spinel ferrites.
    Research on Chemical Intermediates, 41(12), 9439-9449.
    [89] Che, Y., Lu, B., Qi, Q., Chang, H., Zhai, J., Wang, K., & Liu, Z. (2018). Bio-inspired Zscheme gC 3 N 4/Ag 2 CrO 4 for efficient visible-light photocatalytic hydrogen generation.
    Scientific reports, 8(1), 1-12.
    [90] Ghicov, A., Tsuchiya, H., Macak, J. M., & Schmuki, P. (2006). Annealing effects on the
    photoresponse of TiO2 nanotubes. physica status solidi (a), 203(4), R28-R30.
    [91] Beams, R., Cançado, L. G., & Novotny, L. (2015). Raman characterization of defects and
    dopants in graphene. Journal of Physics: Condensed Matter, 27(8), 083002.
    [92] López-Díaz, D., Lopez Holgado, M., García-Fierro, J. L., & Velázquez, M. M. (2017).
    Evolution of the Raman spectrum with the chemical composition of graphene oxide. The
    Journal of Physical Chemistry C, 121(37), 20489-20497.
    [93] Gao, G., Liu, D., Tang, S., Huang, C., He, M., Guo, Y., . . . Gao, B. (2016). Heat-initiated
    chemical functionalization of graphene. Scientific reports, 6(1), 1-8.

    QR CODE
    :::