跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王瀞萱
Jing-Xuan Wang
論文名稱: 金屬發泡材特性對高溫型質子交換膜金屬發泡材燃料電池之影響
Effects of Metal Foam Properties on the Performance of High Temperature PEM Fuel Cells with Metal Foam Flow Distributors
指導教授: 曾重仁
Chung-jen Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 107
中文關鍵詞: 金屬發泡材流道薄化高溫型質子交換膜燃料電池
外文關鍵詞: metal foam, flow channel depth reduction, HT-PEM fuel cell
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為將陽極端流道減薄,本研究使用不同規格金屬發泡材,探討其孔洞數與厚度對其孔徑、孔隙率、滲透率與電阻值之影響,並應用於高溫型質子交換膜燃料電池,且將薄化之最佳結果與實驗室原設計進行比較,以及探討操作溫度、加濕溫度、氣體背壓與空氣當量比等參數對電池性能之影響。
    研究結果顯示,在金屬發泡材物理特性分析中,能使用雷諾數與摩擦因子之關係建立不同規格金屬發泡材之氣體擴散性。在燃料電池研究上,當流量固定時,厚度減薄會使氣體流速變快,故使用滲透率較低之發泡材能有效薄化流道並維持電池性能,而本研究成功建立發泡材之穆迪圖與電池性能及交流阻抗分析之結果相符。與原設計相比,最佳條件之設計可將陽極端減薄30.8 %與單電池總重量減少20 %,在0.6 V之性能提升11.5 %。操作參數之結果顯示,增加溫度、背壓與空氣當量比皆能提升電池性能,唯有加濕對電池性能影響不大。


    In order to reduce the thickness and weight of the metallic flow distributor plate, the effects of channel depth, pore size and thickness of metal foam are investigated. Relation between pore size, thickness and the permeability and electrical resistance of the metal foam were first established. Then, these metal foams were applied to high temperature proton exchange membrane fuel cell. The performance of new design were compared with previous design. Moreover, effects of cell temperature, humidification, back pressure and air stoichiometry were also studied.
    The results of fuel cells show that the lower permeability of metal foam was favorable for the thinner flow channel. The reason is that, for fixed flow rate, gas velocity is increased with the thinner flow channel and lower permeability increases the probability of gas moving into the reactive area. The fuel cell performance agrees well with the electrochemical impedance results. Compared with previous design, the optimized design reduces 20 % cell weight, while increasing 11.5 % cell performance at 0.6 V. Results also show that increasing temperature, back pressure and air stoichiometry improves the cell performance. However, the degree of humidification does not substantially affect cell performance.

    中文摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 xi 符號說明 xiii 第一章 緒論 1 1-1 前言 1 1-2 質子交換膜燃料電池 4 1-2-1 質子交換膜燃料電池之工作原理 4 1-2-2 質子交換膜燃料電池之組成結構 6 1-2-3 質子交換膜燃料電池之極化現象 10 1-3 電化學交流阻抗基本原理 12 1-4 研究動機與目的 14 第二章 文獻回顧 16 2-1 金屬發泡材特性之研究與應用 16 2-2 高溫型質子交換膜燃料電池 18 2-3 電化學交流阻抗分析 20 第三章 實驗方法與實驗設備 22 3-1 實驗架構與流程 22 3-2 截面結構分析 23 3-3 孔隙率量測 25 3-4 滲透率量測 26 3-5 接觸阻抗量測 27 3-6 燃料電池測試系統 29 3-7 電化學交流阻抗分析儀 32 3-8 燃料電池規格 35 3-8-1 膜電極組 36 3-8-2 矽橡膠氣密墊片 36 3-8-3 鎳金屬發泡材 37 3-8-4 金屬雙極板與流道 38 3-8-5 端板 38 3-9 燃料電池實驗條件 39 第四章 結果與討論 40 4-1 不同PPI之截面分析 40 4-2 不同規格金屬發泡材與孔隙率之關係 41 4-3 金屬發泡材之氣體擴散性分析 41 4-3-1 PPI與滲透率之關係 41 4-3-2 厚度與滲透率之關係 43 4-3-3 流速與雷諾數之關係 46 4-3-4 流速與摩擦因子之關係 47 4-3-5 雷諾數與摩擦因子之關係 48 4-4 金屬發泡材之電性分析 49 4-4-1 PPI與碳紙之接觸阻抗 49 4-4-2 厚度與碳紙之接觸阻抗 50 4-5 單電池性能測試與交流阻抗分析 52 4-5-1 陽極端流道薄化對電池性能之影響 52 4-5-2 薄化設計與實驗室原設計之比較 61 4-5-3 溫度對電池性能之影響 64 4-5-4 加濕對電池性能之影響 69 4-5-5 背壓對電池性能之影響 72 4-5-6 陰極端當量比對電池性能之影響 76 第五章 結論與未來規劃 81 5-1 結論 81 5-2 未來規劃 83 參考文獻 84

    [1] Johnson Matthey PLC, “The fuel cell today industry review 2011 technical report”, Fuel Cell Today, 2011.
    [2] K. Kordesch, G. Simader, “Fuel cells and their applications”, VCH Weinheim, 1996.
    [3] 蔡秉蒼,「應用金屬發泡材為流道之質子交換膜燃料電池之研究」,國立中央大學能源工程研究所博士論文,2012.
    [4] J. J. Sumner, S. E. Creagert, J. J. Ma and D. D. DesMarteau, “Proton conductivity in Nafion○R 117 and in a novel bis[(perfluoroalkyl)sulfonyl]-imide ionomer membrane”, J. Electrochem. Soc., Vol. 145, No. 1, 1998.
    [5] Y. L. Ma, J. S. Wainright, M. H. Litt and R. F. Savinell, “Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells”, J. Electrochem. Soc., Vol. 151, pp. A8-A16, 2004.
    [6] J. A. Asensio, S. BorrÓs, P. Gomez-Romero, “Proton-conducting membranes based on poly(2,5-benzimidazole)(ABPBI) and phosphoric acid prepared by direct acid casting”, J. Membr. Sci., Vol. 241, pp. 89-93, 2004.
    [7] X. Cheng, Z. Shi, N. Glass, L. Zhang, J. Zhang, D. Song, Z. S. Liu, H. Wang J. Shen, “A review of PEM hydrogen fuel cell contaminiation: impacts, mechanisms and mitigation”, J. Power Sources, Vol. 165, pp. 739-756, 2007.
    [8] 黃鎮江,「燃料電池」,全華科技圖書股份有限公司,2005.
    [9] E. Barsoukov, J. R. Macdonald (2nd Eds), “Impedance spectroscopy: theory, experiment, and application”, John Wiley&Sons, Inc., 2005.
    [10] A. Chandan, M. Hattenberger, A. El-kharouf, S. Du, A. Dhir, V. Self, B. G. Pollet, A. Ingram, W. Bujalski, “High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)-a review”, J. Power Sources, Vol. 231, pp. 264-278, 2013.
    [11] S. Yu, L. Xiao, B. C. Benicewicz, “Durability studies of PBI-based high temperature PEMFCs”, Fuel Cells, Vol. 8, No. 3-4, pp. 165-174, 2008.
    [12] C. de Beer, P. S. Barendse, P. Pillay, B. Bullecks, R. Rengaswamy, “Degradation of high temperature PEM fuel cells and the impact on electrical performance”, Proc. IEEE ICIT, pp. 690-694, 2013.
    [13] H. Su, S. Pasupathi, B. Bladergroen, V. Linkov, B. G. Pollet, “Performance investigation of membrane electrode assemblies for high temperature proton exchange membrane fuel cell”, J. Power Energy Eng., Vol. 1, pp. 95-100, 2013.
    [14] C. J. Tseng, B. T. Tsai, Z. S. Liu, T. C. Cheng, W. C. Chang, “A PEM fuel cell with metal foam as flow distributor”, Energy Convers. Manage., Vol. 62, pp. 14-21, 2012.
    [15] B. T. Tsai, C. J. Tseng, Z. S. Liu, C. H. Wang, C. I. Lee, C. C. Yang, S. K. Lo,“Effects of flow field design on the performance of a PEM fuel cell with metal foam as the flow distributor”, Int. J. Hydrogen Energy, Vol. 37, pp. I3060-I3066, 2012.
    [16] J. Kim, N. Cunningham, “Development of porous carbon foam polymer electrolyte membrane fuel cell”, J. Power Sources, Vol. 195, pp. 2291-2300, 2010.
    [17] N. Dukhan, Ö. Bagci, M. Özdemir, “Metal foam hydrodynamics: flow regimes from pre-Darcy to turbulent”, Int. J. Heat Mass Transfer, Vol. 77, pp. 114-123, 2014.
    [18] N. Dukhan, K. Patel, “Effect of sample’s length on flow properties of open-cell metal foam and pressure-drop correlation”, J. Porous Mater., Vol. 18, pp. 655-665, 2011.
    [19] J. J. Hwang, G. J. Hwang, R. H. Yeh, C. H. Chao, “Measurement of interstitial convective heat transfer and frictional drag for flow across metal foams”, J. Heat Transfer, Vol. 124, pp. 120-129, 2002.
    [20] M. Medraj, E. Baril, V. Loya, L. P. Lefebvre, “The effect of microstructure on the permeability of metallic foams”, J. Mater. Sci., Vol. 42, pp. 4372-4383, 2007.
    [21] M. Boaventura, A. Mendes, “Activation procedures characterization of MEA based on phosphoric acid doped PBI membranes”, Int. J. Hydrogen Energy, Vol. 35, pp. 11649-11660, 2010.
    [22] S. Galbiati, A. Baricci, A. Casalegno, G. Carcassola, R. Marchesi, “On the activation of polybenzimidazole-based membrane electrode assemblies doped with phosphoric acid”, Int. J. Hydrogen Energy, Vol. 37, pp. 14475-14481, 2012.
    [23] C. Zhang, L. Zhang, W. Zhou, Y. Wang, S. H. Chan, “Investigation of water transport and its effect on performance of high-temperature PEM fuel cells”, Electrochim. Acta, Vol. 149, pp. 271-277, 2014.
    [24] S. Galbiati, A. Baricci, A. Casalegno, R. Marchesi, “Experimental study of water transport in a polybenzimidazole-based high temperature PEMFC”, Int. J. Hydrogen Energy, Vol. 37, pp. 2462-2469, 2012.
    [25] J. Zhang, Y. Tang, C. Song, J. Zhang, “Polybenzimidazole-membrane-based PEM fuel cell in the temperature range of 120-200 oC”, J. Power Sources, Vol. 172, pp. 163-171, 2007.
    [26] M. G. Waller, M. R. Walluk, T. A. Trabold, “Performance of high temperature PEM fuel cell materials. Part 1: effects of temperature, pressure and anode dilution”, Int. J. Hydrogen Energy, Vol. 41, pp. 2944-2954, 2016.
    [27] Z. Qi, S. Buelte, “Effect of open circuit voltage on performance and degradation of high temperature PBI-H3PO4 fuel cells”, J. Power Sources, Vol. 161, pp. 1126-1132, 2006.
    [28] N. H. Jalani, M. Ramani, K. Ohlsson, S. Buelte, G. Pacifico, R. Pollard, R. Staudt, R. Datta, “Performance analysis and impedance spectral signatures of high temperature PBI-phosphoric acid gel membrane fuel cells”, J. Power Sources, Vol. 160, pp. 1096-1103, 2006.
    [29] C. Y. Chen, W. H. Lai, “Effects of temperature and humidity on the cell performance and resistance of a phosphoric acid doped polybenzimidazole fuel cell”, J. Power Sources, Vol. 195, pp. 7152-7159, 2010.
    [30] M. S. Kondratenko, M. O. Gallyamov, A. R. Khokhlov, “Performance of high temperature fuel cells with different types of PBI membranes as analysed by impedance spectroscopy”, Int. J. Hydrogen Energy, Vol. 37, pp. 2596-2602, 2012.
    [31] J. L. Jespersen, E. Schaltz, S. K. Kær, “Electrochemical characterization of a polybenzimidazole-based high temperature proton exchange membrane unit cell”, J. Power Sources, Vol. 191, pp. 289-296, 2009.
    [32] C. D. Beer, P. S. Barendse, P. Pillay, B. Bullecks, R. Rengaswamy, “Electrical circuit analysis of CO poisoning in high-temperature PEM fuel cells for fault diagnostics and mitigation”, IEEE Trans. Ind. Appl., Vol. 51, pp. 619-630, 2015.
    [33] X. Lai, D. Liu, L. Peng, J. Ni, “A mechanical-electrical finite element method model for predicting contact resistance between bipolar plate and gas diffusion layer in PEM fuel cells”, J. Power Sources, Vol. 182, pp. 153-159, 2008.
    [34] M. S. Ismail, D. B. Ingham, L. Ma, M. Pourkashanian, “The contact resistance between gas diffusion layers and bipolar plates as they are assembled in proton exchange membrane fuel cells”, Renew. Energy, Vol. 52, pp. 40-45, 2013.
    [35] A. Vikram, P. R. Chowdhury, R. K. Phillips, M. Hoorfar, “Measurement of effective bulk and contact resistance of gas diffusion layer under inhomogeneous compression-Part I: electrical”, J. Power Sources, Vol. 320, pp. 274-285, 2016.
    [36] R. O’Hayre, W. S. Cha, W. Colella, F.B. Prinz, “Fuel cell fundamentals”, Wiley, 2005.

    QR CODE
    :::