跳到主要內容

簡易檢索 / 詳目顯示

研究生: 魏敬紋
Jing-Wen Wei
論文名稱: NIPAAm水凝膠薄膜熱固化特性研究
指導教授: 洪銘聰
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 98
中文關鍵詞: NIPAAm
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 水凝膠為具有三維網狀結構的親水性高分子聚合物,放置在水中能夠大量吸收水分澎潤而不溶解。以NIPAAm(N-isopropylacrylamide)為單體聚合而成的溫度感測型水凝膠,因具有低臨界溶解溫度(lower critical solution temperature),當外在溫度的改變時會吸水澎潤或排水收縮產生劇烈體積變化,以及其接近室溫的操作環境,可應用於微機電系統裝置中。目前NIPAAm水凝膠的製程多為UV光聚合反應,此製程需添加光起始劑,但光起始劑價格昂貴、保存不易且毒性高,因此本文選用熱製程製備水凝膠薄膜並研究製程參數,選用的起始劑種類不具有光起始劑的缺點,熱固化製程具有微機電系統整合與應用的潛力。
    本論文研究水凝膠的厚度及溫度對於收縮速度影響,並以表面張力沾附分析法與影像處理分析法,探討水凝膠在不同溫度的加熱固化情形,實驗將配置好的水凝膠溶液塗佈在矽晶圓上,於加熱過程觀察沾附現象同時記錄水凝膠白化過程,最後以微加熱器局部熱固化水凝膠薄膜並控制固化範圍。加熱排水實驗結果顯示,相同厚度的情況,溫度越高水凝膠收縮速度越快;而相同溫度的情況下,厚度越薄水凝膠收縮速度越快。加熱固化製程實驗結果顯示,當加熱固化溫度越高水凝膠的固化速度越快,以阿瑞尼斯方程式計算出活化能約47 kJ/mol,相較於表面張力沾附分析法,影像處理分析法能較完整呈現固化過程。最後以微加熱器搭配電致冷晶片作試片溫度控制,展示局部熱固化水凝膠薄膜器控制固化範圍的可行性。


    Hydrogel is a hydrophilic three-dimension network polymer, which can swell and contain large amount of water within its structure without dissolution. N-isopropyl-acrylamide(NIPAAm) hydrogel has lower critical solution temperature near room temperature. It swells or shrinks below or above the temperature. The dramatic volume change and the low operating temperature characteristics make it a promising mechanism in MEMS devices. To pattern the NIPAAm films, UV photopolymerization is the most common method, which requires the addition of photoinitiators. However, the photo initiators are expensive, difficult to store, and have highly toxic. In this study, we propose a thermal process to prepare and pattern hydrogel thin films, which do not have the disadvantages of the photoinitiator. The thermal process also has the potential fabrication integration in MEMS thermal actuators.
    In this thesis, we explore the shrinkage rate, the thermal curing processes, and the local curing of NIPAAm films. In the experiments, the hydrogel solution is coating on a silicon wafer. The wettability tests and optical inspections are used to observe the adhesion phenomenon and the color changes during the heating process at different temperatures. Finally, the micro-heater is used to locally cure the hydrogel film at different environment temperatures to controls the size of the films.
    The results show that with the same thickness, the higher the temperature, the faster the hydrogel shrinks; while at the same temperature, the thinner the thickness, the faster the hydrogel shrinks. In the heating process experiments show that the higher the heat temperature is, the faster the hydrogel polymerizes. The activation energy calculated by Arrhenius equation is around 47 kJ/mol. Compared with the wettability tests, optical inspection method can show the curing process with less errors. Finally, the micro-heater experiments demonstrate the feasibility of controlling the curing range of the hydrogel film with a local curing and temperature control of the substrate.

    摘要 i Abstract ii 目錄 iii 圖目錄 v 表目錄 x 第一章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 3 1-3 研究動機與目的 8 1-4 論文架構 8 第二章 理論基礎 10 2-1 智慧型水凝膠種類 10 2-2 水凝膠交聯方法 14 2-3 溫度感測型水凝膠NIPAAm 18 第三章 研究方法 23 3-1 研究架構 23 3-2 水凝膠配製 25 3-3 水凝膠加熱排水實驗 27 3-4 水凝膠加熱固化實驗 29 3-4-1 表面張力沾附分析 30 3-4-2 影像處理分析 32 3-5 微加熱器局部固化水凝膠薄膜 33 第四章 結果與討論 37 4-1 水凝膠加熱排水收縮實驗結果 37 4-2 水凝膠加熱固化製程實驗結果 45 4-2-1 表面張力沾附分析結果 46 4-2-2 影像處理分析結果 54 4-3 微加熱器局部固化水凝膠薄膜實驗結果 67 第五章 結論與未來工作 78 5-1 結論 78 5-2 未來工作 79 參考文獻 81

    參考文獻
    [1] W. Zhao, X. Jin, Y. Cong, Y. Liu, and J. Fu.”Degradable natural polymer hydrogels for articular cartilagetissue engineering,“ Journal of Chemical Technology and Biotechnology, Volume 88, issue 3, pp.327-339, 2013
    [2] S. Gulrez, S. Al-Assaf, and G.Phillips, ”Hydrogels: methods of preparation, characterisation and applications,“ in Progress in molecular and environmental bioengineering-from analysis and modeling to technology applications, Rijeka, C. Angelo (Ed.), pp.117-118, 2011
    [3] E. M.Ahmed, ”Hydrogel: Preparation, characterization, and applications: A review” Journal of Advanced Research, Volume 6, Issue 2, pp.107, 2015
    [4] S. Simões, A. Figueiras, and F. Veiga, “Modular Hydrogels for Drug Delivery,” Journal of Biomaterials and Nanobiotechnology, Volume 3, No. 2, pp.185-199, 2012
    [5] T. R. Hoare and D. S. Kohane, “Hydrogels in drug delivery: Progress and challenges,”, Polymer, Volume 49, Issue 8, pp.1993-2007,2008
    [6] L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated bystimuli-responsive hydrogels.” Nature, Volume. 442, pp.551-554, 2006.
    [7] D. Zhu, C. Li, X. Zeng, and H. Jiang, “Hydrogel-actuated tunable-focus microlens arrays mimicking compound eyes,” TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference, Denver, CO, pp.2302-2305 , 2009
    [8] Z. Ding, P. Wei and B. Ziaie, “Self-Folding Smart 3D Microstructures Using a Hydrogel-Parylene Bilayer,” 2010 18th Biennial University /Government/Industry Micro/Nano Symposium, West Lafayette, IN, pp.1-4, 2010
    [9] J. C. Kuo, S. W. Tung, and Y. J. Yang, “A hydrogel-based intravascular microgripper manipulated using magnetic fields,” 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), Barcelona, pp.1683-1686, 2013
    [10] Y. Yamamoto, K. Kanao, T. Arie, S. Akita, and K. Takei, “Electrical powerless, thermal and optical responsive polymer-based actuator,” 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Anchorage, AK, pp. 2129-2131, 2015
    [11] M. Selvaraj and K. Takahata, “A steerable smart catheter tip realized by flexible hydrogel actuator,” 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), Shanghai, pp.161-164, 2016
    [12] Dr. Ramesh Ramadoss, Formfactor, San Jose, CA, “MEMS devices for biomedical applications” Available online: http://electroiq.com/blog/2013/10/mems-devices-for-biomedical-applications/
    [13] L. Ionov, “Hydrogel-based actuators: possibilities and limitations.” Materials Today, Volume 17, Issue 10, pp.494-503, 2014
    [14] Q. Wang, J. Huang, and Y. Lai (2016).” Smart Drug Delivery Strategies Based on Porous Nanostructure Materials, ” in Smart Drug Delivery System, Edited by Ali Demir Sezer, Intech-open Access Pubisher, Chapter 3,2016
    [15] M. Ebara, Y. Kotsuchibashi, K. Uto, T. Aoyagi, Y.-J. Kim, R. Narain, N. Idota, and J. Hoffman,” Smart Hydrogels. Smart Biomaterials,” Japan, Springer, 2014
    [16] F. Zhao, D. Wu, D.Yao, R. Guo, W. Wang, A. Dong, D. Kong, and J. Zhang, “An injectable particle-hydrogel hybrid system for glucose-regulatory insulin delivery,” Acta Biomaterialia, Volume 64, pp.334-345, 2017
    [17] W. A. Laftah, S. Hashim, and A. N. Ibrahim “Polymer Hydrogels: A Review”, Polymer-Plastics Technology and Engineering, Volume 50, Issue 14, pp.1475-1486, 2011
    [18] Mebiol® Gel, MBG-PMW20-5001 “COSMO Bio Company, Limited[JP]”, Available online:
    https://www.cosmobio.com/products/mbg_pmw205001_1x50.html
    [19] Yahia LH, Chirani N, and Gritsch L,” History and Applications of Hydrogels,” Journal of Biomedical Science, Volume4, Issue 2, 2015
    [20] Raymond Chang, Physical Chemistry for the Biosciences, Sausalito, Edwards Brothers Inc, pp.508-510, 2005
    [21] Y.H Tsou, J. Khoneisser, P.C. Huang, and X. Xu, “Hydrogel as a bioactive material to regulate stem cell fate,” ,Bioactive Materials, Volume 1, Issue 1,2016,p.p 39-55
    [22] “Condensation Reactions”, Available online: http://www.softschools.com/chemistry/organic_chemistry/condensation_
    reactions/
    [23] A. Castellanos, J. Leffew, and W. Moreno, “FIB and E-beam cross-linked poly(N-isopropylacrylamide) patterning for BioMEMS/NEMS,” 2008 7th International Caribbean Conference on Devices, Circuits and Systems, Cancun, pp.1-6, 2008
    [24] X Zhang, D Wu, C Chu, “Effect of the crosslinking level on the properties of temperature‐sensitive poly(N‐isopropylacrylamide) hydrogels,” Journal of Polymer Science Part B: Polymer Physics, vol. 41, issue 6, pp. 582-593, 2003
    [25] S. Lanzalaco, E. Armelin, “Poly(N-isopropylacrylamide) and Copolymers: A Review on Recent Progresses in Biomedical Applications,” Gels, Volume 3, No. 4, pp.36, 2017
    [26] S. Campbell, D. Maitland, and T. Hoare, “Enhanced Pulsatile Drug Release from Injectable Magnetic Hydrogels with Embedded Thermosensitive Microgels,” ACS Macro Letters, Volume 4,Issue 3, pp. 312-316, 2015
    [27] J. Tang, X. Cui, T. G. Caranasos, M. T. Hensley, A. C. Vandergriff, Y. Hartanto, D. Shen, H. Zhang, J. Zhang, and K. Cheng, “Heart Repair Using Nanogel-Encapsulated Human Cardiac Stem Cells in Mice and Pigs with Myocardial Infarction.” ACS Nano, Volume 11, Issue 10, pp.9738-9749, 2017
    [28] 吳政昱,用聚異丙基丙烯醯胺水膠製作熱致色變節能窗材,大同大學機械工程學系,2008
    [29] Hu, Xiaobo, Zhen Tong, and L. Andrew Lyon, “Control of Poly(N-isopropylacrylamide) Microgel Network Structure by Precipitation Polymerization near the Lower Critical Solution Temperature,” Langmuir : the ACS journal of surfaces and colloids 27.7 : pp.4142–4148, 2011
    [30] 集研科技應變規型錄Foil Strain Gauges Series F

    QR CODE
    :::