| 研究生: |
宋瑋益 Wei-Yi Sung |
|---|---|
| 論文名稱: |
基於雙折射偏振干涉術之滾轉角量測技術 Roll Angle Measurement based on Birefringence Polarization Interferometry |
| 指導教授: |
李朱育
Ju-Yi Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 光機電工程研究所 Graduate Institute of Opto-mechatronics Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 雙折射 、偏振干涉術 、滾轉角量測 、偏振相機 |
| 外文關鍵詞: | birefringence, polarization interferometry, roll angle measurement, polarization camera |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技的進步,精密機械的加工精度與準確的機台校正及定位有密切的關係,不論是位移或是角度皆需要依靠高準確度的量測系統,提供加工機校正及定位,而本研究將提出針對滾轉角的量測方法。近年來有許多學者提出對於滾轉角量測的方法與技術,其中部分利用外差干涉儀結合相位延遲片或稜鏡等,亦有利用雷測準直儀結合光柵,對於不同的量測元件都可以達到滾轉角量測的目的,而本研究開發的系統是使用雙折射晶體做為量測元件。外差干涉儀具備高解析度的優點,但其傳統的解相系統體積龐大、架構複雜對於空間受限的區域並無法正常使用,因此本研究引進新穎的偏振相機,取代傳統解相系統,建立一套共光程滾轉角量測系統,以降低環境的干擾,並同時具備高解析度的優點。
本研究提出「基於雙折射偏振干涉術之滾轉角量測技術」,為一種共光程的滾轉角量測系統,其透過偏振相機結合偏振干涉術,可快速獲得雙折射晶體引入的相位差訊號,並且透過相位差與滾轉角關係式的計算,取得滾轉角的變化量。本系統有效的改善傳統干涉儀體積龐大、架構複雜等問題。本文藉由大、中、小不同滾轉角行程的量測實驗,驗證本量測系統的可行性,而行程量測實驗的滾轉角行程分別為0.5º、0.1º及0.05º,由實驗結果可顯示本量測系統的穩定度與準確度。此外根據量測不確定度原理分析,本研究的滾轉角量測系統解析度可以達到0.0023º,並且具備10º的量測範圍。最後透過系統誤差與隨機誤差分析,提出有效改善與補償誤差的方法,進而提升量測系統的穩定度與準確度。
As technology advances, the processing accuracy of precision machinery is closely related to the accurate calibration and positioning of the processing machine. Whether it is displacement or angle, it needs to rely on a high-accuracy measurement system to provide the basis for the calibration and positioning of the processing machine. And this research will propose a measurement method for the roll angle. In recent years, many scholars have also proposed methods and techniques for measuring the roll angle. Some of them use heterodyne interferometers combined with phase retarders or prisms, and also use laser collimator combined with gratings, which can be achieved for different measurement components. The purpose of roll angle measurement. The system developed in this research uses a birefringent crystal as the measuring element. The heterodyne interferometer has the advantage of high resolution, but its traditional phase-resolving system is bulky and complex, so it cannot be used in areas with limited space. Therefore, this research introduces a novel polarization camera to replace the traditional phase-resolving system and establish a common-path measurement system to reduce environmental interference, and at the same time has the advantage of high resolution. This research proposes a "Roll Angle Measurement based on Birefringence Polarization Interferometry", which is a common-path roll angle measurement system, which can quickly obtain the phase difference signal introduced by the birefringent crystal through a polarization camera combined with polarization interferometry. And through the calculation of the relationship between the phase difference and the roll angle, the change amount of the roll angle is obtained. The system effectively improves the problems of traditional interferometers such as bulkiness and complex structure. This paper verifies the feasibility of the measurement system through the measurement experiments of different roll angular strokes of large, medium and small. The roll angular strokes of the stroke measurement experiment are respectively 0.5º, 0.1º and 0.05º. The experimental results can be used to verify the feasibility of the measurement system. In addition, according to the analysis of the measurement uncertainty principle, the resolution of the roll angle measurement system in this study can reach 0.0023º, and it has a measurement range of 10º. Finally, through the analysis of system error and random error, an effective method for improving and compensating the error is proposed, thereby improving the stability and accuracy of the measurement system.
[1]H. L. Huang, C. H. Liu, W. Y. Jywe, M. S. Wang, and T. H. Fang, “Development of a three-degree-of-freedom laser linear encoder for error measurement of a high precision stage,” Rev. Sci. Instrum. 78(6), 066103 (2007).
[2]O. U. Lashmanov, A. S. Vasilev, A. V. Vasileva, A. G. Anisimov, and V. V. Korotaev, “High-precision absolute linear encoder based on a standard calibrated scale,” Measurement, 123, 226-234 (2018).
[3]何傑,「談光學標準尺的校正方法」,科儀新知,第二十四卷,第五期,民國92年
[4]C. K. Lee and T. W. Wu, “Differential laser interferometer for nanometer displacement measurements,” AIAA J. 33(9), 1675-1680 (1995).
[5]X. Liu, W. Clegg, D. F. L. Jenkins, and B. Liu, “Polarization interferometer for measuring small displacement,” IEEE Trans. Instrum. Meas. 50(4), 868-871(2001).
[6]J. Y. Lee and G. A. Jiang, “Displacement measurement using a wavelength-phase-shifting grating interferometer,” Opt. Express 21(21), 25553–25564 (2013).
[7]C. H. Liu, H. L. Huang, and H.-W. Lee, “Five-degrees-offreedom diffractive laser encoder,” Appl. Opt. 48(14), 2767-2777 (2009).
[8]B. Chen, L. Yan, X. Yao, T. Yang, D. Li, W. Dong, C. Li, and W. Tang, “Development of a laser synthetic wavelength interferometer for large displacement measurement with nanometer accuracy, ” Opt. Express, 18(3), 3000-3010 (2010).
[9]C. Cui, Q. Feng, and B. Zhang, “Compensation for straightness measurement systematic errors in six degree-offreedom motion error simultaneous measurement system,” Appl. Opt. 54(11), 3122-3131 (2015).
[10]C. Cui, Q. B. Feng, B. Zhang, Y. Zhao, “System for simultaneously measuring 6DOF geometric motion errors using a polarization maintaining fiber-coupled dual-frequency laser,” Opt. Express, 24(6), 6735-6748 (2016).
[11]Y. Huang, K. C. Fan, W. Sun, S. Liu,” Low cost, compact 4-DOF measurement system with active compensation of beam angular drift error, ” Opt. Express, 26(13), 17185-17198 (2018).
[12]J. Yuan and X. Long, “CCD-area-based autocollimator for precision small-angle measurement,” Rev. Sci. Instrum. 74(3), 1362 (2003).
[13]K. Li, C. Kuang, and X. Liu, “Small angular displacement measurement based on an autocollimator and a common-path compensation principle,” Rev. Sci. Instrum. 84(1), 015108 (2013).
[14]M. Ikram and G. Hussain, “Michelson interferometer for precision angle measurement,” Appl. Opt. 38(1), 113-120 (1999).
[15]A. Zhang and P. S. Huang, “Total internal reflection for precision small-angle measurement,” Appl. Opt. 40(10), 1617-1622 (2001).
[16]J. Y. Lin, Y. C. Liao, “Small-angle measurement with highly sensitive total-internal-reflection heterodyne interferometer,” Appl. Optics. 53(9) 1903-1908 (2014).
[17]C. M. Wu and Y. T. Chuang, “Roll angular displacement measurement system with microradian accuracy,” Sens. Actuators A, 116(1), 145-149 (2004).
[18]Y. F. Le, W. M. Hou, K. Hu, and K. Shi, “High-sensitivity roll-angle interferometer,” Opt. Lett. 38(18), 3600-3603 (2013).
[19]K. Shi, J. Su, and W. Hou, “Roll angle measurement system based on differential plane mirror interferometer,” Opt. Express, 26(16), 19826-19834 (2018).
[20]S. Tang, Z. Wang, J. Gao, and J. Guo, “Measurement method for roll angular displacement with a high resolution by using diffraction gratings and a heterodyne interferometer,” Rev. Sci. Instrum. 85(4), 045110 (2014).
[21]S. Tang, Z. Wang, M. Li, W. Zhang, F. Yang, and X. Zhang, “Note: A small roll angle measurement method with enhanced resolution based on a heterodyne interferometer,” Rev. Sci. Instrum. 86(9), 096104 (2015).
[22]S. R. Gillmer, X. Yu, C. Wang, and J. D. Ellis, ‘‘Robust high-dynamicrange optical roll sensing,’’ Opt. Lett. 40(11), 2497-2500 (2015).
[23]J. Huang, Z. Wang, J. Gao, H. Qi and J Qi, “A high-precision measurement of small roll angular displacements based on AOMs and its error impact analysis,” Meas. Sci. Technol. 28(10), 105204 (2017).
[24]J. Qi, Z. Wang, J. Huang, and J. Gao, “Resolution-enhanced heterodyne laser interferometer with differential configuration for roll angle measurement,” Opt. Express 26(8), 9634-9644 (2018).
[25]J. Qi, Z. Wang, J. Huang, Q. Wang, and J. Gao, “Heterodyne interferometer with two parallel-polarized input beams for high-resolution roll angle measurement,” Opt. Express 27(10), 13820-13830 (2019).
[26]T. Zhang, Q. Feng, C.Cuiand, and B. Zhang, “Research on error compensation method for dual-beam measurement of roll angle based on rhombic prism,” Chin. Opt. Lett. 12(7), 071201 (2014).
[27]Y. Cai, B. Yang, K. C. Fan, “Robust roll angular error measurement system for precision machines,” Opt. Express 27(6), 8027-8036 (2019).
[28]W. Ren, J. Cui, and J. Tan, “A novel enhanced roll-angle measurement system based on a transmission grating autocollimator,” IEEE Access, 7, 120929–120936 (2019).
[29]S. Zhou, V. Le, Q. Mi, and G. Wu, “Grating-corner-cube-based roll angle sensor,” Sensors, 20(19), 5524 (2020).
[30]P. Zhang, Y. Wang, C. Kuang, S. Li, and X. Liu, ‘‘Measuring roll angle displacement based on ellipticity with high resolution and large range,’’ Opt. Laser Technol. 65, 126-130 (2015).
[31]石英晶體折射率
http://www.u-photonics.com/Quartz.html
[32]S. O. Kasap著,黃俊達等譯,光電子與光子學-原理與應用,台灣培生教育出版股份有限公司出版 (2003年)。
[33]陳林裕,「雙折射外差干涉術之角度量測及定位技術開發」,國立中央大學,碩士論文,民國103年。
[34] C. H. Hsieh, C. C. Tsai, H. C. Wei, L. P. Yu, J. S. Wu, and C. Chou, “Determination of retardation parameters of multiple-order wave plate using a phase-sensitive heterodyne ellipsometer,” Appl. Opt. 46(23), 5944-5950 (2007).
[35] H. L. Hsieh, J. Y. Lee, L. Y. Chen, and Y. Yang, “Development of an angular displace-ment measurement technique through birefringence heterodyne interferometry,” Opt. Express 24(7), 6802-6813 (2016).
[36]A. Yariv and P. Yeh, Optical Waves in Crystals (John Wiley, 2003).
[37]黃衍介著,近代實驗光學,台灣東華書局股份有限公司出版 (2011).
[38]Rotation Matrix
https://mathworld.wolfram.com/RotationMatrix.html (Wolfram MathWorld).
[39]陳柏翰,「四步移相解相位系統應用於光柵耦合表面電漿共振」,國立中央大學,碩士論文,民國102年。
[40]J. Y. Lee, T. K. Chou, and H. C. Shih, “Polarization-interferometric surface-plasmon-resonance imaging system,” Opt. Lett. 33(5), 434-436 (2008).
[41]R. J. Moffat, “Describing the uncertainties in experimental results,” Exp. Therm. Fluid Sci. 1(1), 3-17 (1988).
[42]H. Y. Yeh, Y. K. Hsu, A. C. Wei and J. Y. Lee, “Dynamic out-of-plane displacement measurement using the instantaneous analysis phase-shifting method,” Microsyst. Technol. 27(1), 957–965 (2021).
[43]偏振相機BFS-U3-51S5P-C
https://www.edmundoptics.com.tw/p/bfs-u3-51s5p-c-usb3-blackflyreg-s-polarization-camera/41357/ (Edmund Optics).
[44]偏振相機光傳感元件Sony IMX250MYR
https://www.sony-semicon.co.jp/products/common/pdf/IMX250_253MZR_MYR_
Flyer_en.pdf .
[45]電控旋轉平台PRM1-Z7
https://www.thorlabs.com/thorproduct.cfm?partnumber=PRM1-Z7 (Thorlabs).
[46]電控旋轉平台控制介面APT
https://www.thorlabs.com/images/TabImages/GuideToLabVIEWandAPT.pdf (Thorlabs).