| 研究生: |
簡奇偉 Chi-Wei Chien |
|---|---|
| 論文名稱: |
平板式固態氧化物燃料電池氣態多孔管道之速度量測 DPIV Measurements of Gaseous Porous Ducts for Planar SOFC |
| 指導教授: |
施聖洋
Shenqyang Shy |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | DPIV量測 、滑移速度 、雙極板 、固態氧化物燃料電池 、多孔性流道 |
| 外文關鍵詞: | slip velocity, Solid oxide fuel cell, porous flow channel, bipolar plate (interconnect), DPIV measurement |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以實驗的方法,研究平板式固態氧化物燃料電池(solid oxide fuel cell, SOFC)內部流體流動的特性。第一個重點,利用實驗室已有之SOFC雙極板流道水力測試平台,使用具雙進氣口與單排氣口設計之雙極板,定性探討流體於不同分流設計概念之流場分佈情形。結果顯示,以鎳網(Ni mesh)來分流模擬陽極端燃料比使用矩形肋條(ribs)之分流設計有較佳的流場均勻性。然而,鎳網流場之速度分佈仍呈一拋物曲線(parabolic curve),經與核能研究所電化學反應所產生之鎳網劣化分佈情形作比對後,發現彼此均具有同樣之拋物線分佈,故分流速度分佈對流場均勻度之提升或可改善鎳網劣化之情形,提昇SOFC之壽命。第二個但同等重要的研究重點,為利用數位質點影像測速儀(DPIV),進行定量量測氣態單一矩形管多孔流道內部及界面處之全場速度分佈。流道模型之尺寸是以核能研究所之SOFC單一流道為參考依據,等比例放大十倍。進行測試的多孔材料包含鎳網、石膏、氧化鋯和氧化鋁等四種,由孔隙分析儀量測所得之孔隙度(ε),分別為43%、40%、17和4%。由DPIV量測所得的數據可以得知,流體與多孔介質材料界面接觸的附近會產生滑移速度,且滑移速度會隨ε值增加而增加。其中在z/D = 0.025處(目前可準確量測到距多孔介質材料界面最近垂直間距為z= 0.2 mm,其中D為流道高度),鎳網材料(ε = 43%)有最大的滑移速度,是固體界面(ε = 0)同一高度之速度的2.73倍,顯示非滑移條件(non-slip condition)完全不適用於多孔介質之邊界條件,此結果對正確預測雙極板流道流速分佈及其相應之壓力分佈有重要的影響。
This thesis investigates experimentally flow transport phenomena in planar solid oxide fuel cell (SOFC). The first objective is to measure flow uniformity in a series of rectangular flow channels with different gas distributors using hydraulic platform. The geometries of the feed and the exhaust headers are kept the same for all experiments using the double-inlet/single outlet design, but different distributors such as ribs and Ni-mesh are applied in attempt to increase flow uniformity. Based on flow visualizations, it is found that a better flow uniformity can be produced when using Ni-mesh than using ribs. But the velocity profile across the transverse of Ni-mesh is nearly parabolic, very similar to the degradation profile of NiO occurred in Ni-mesh after single cell test operation. Probably, the better flow uniformity can lessen the degradation problem and extend the longevity of the cell. The second but equally important objective is to quantitatively measure the flow velocity field in a single gaseous porous rectangular duct using digital particle image velocimetry (DPIV). The porous media used in this study are Ni-mesh, gypsum, chromium oxide (ZrO2), and aluminum oxide (Al2O3), of which individual porosities (ε=pore volume/bulk volume) measured by the porosimeter are 43%, 40%, 17%, and 4%, respectively. It is found that the slip velocity at the interface between the porous surface boundary and the air significant. The slip velocity increases with increasing porosity. The maximum dimensionless slip velocity, defined as U(ε)/U(ε=0) at z/D = 0.025, is equal to 2.73 when the Ni-mesh (ε=43%) was used. Thus, the traditional non-slip condition cannot be used at the interface between the air and the porous medium. This result is important for correct estimations of velocity and pressure distributions in interconnects.
Ackmann, T., de Haart, L .G. J., Lehnert, W. & Stolten, D. 2003 Modeling of mass and heat transport in planar substrate type SOFCs. J. Electrochem. Soc. 150, A783-A789.
Agelinchaab, M., Tachie, M. F. & Ruth, D. W. 2006 Velocity measurement of flow through a model three-dimensional porous medium. Phy. Fluids 18, 017105.
Autissier, N., Larrain, D., Van herle, J. & Favrat, D. 2004 CFD simulation tool for solid oxide fuel cells. J. Power Sources 131, 313-319.
Barreras, F., Lozano, A., Vali˜no, L., Mar´ın, C. & Pascau, A. 2005 Flow distribution in a bipolar plate of a proton exchange membrane fuel cell: experiments and numerical simulation studies. J. Power Sources 144, 54-66.
Bassiouny, M. K. & Martin, H. 1984 Flow distribution and pressure drop in plate heat exchangers I; U-type arrangement. Chem. Engin. Sci. 39, 693-700.
Bassiouny, M. K. & Martin, H. 1984 Flow distribution and pressure drop in plate heat exchangers I; Z-type arrangement. Chem. Engin. Sci. 39, 701-704.
Beale, S. B. 2004 Calculation procedure for mass transfer in fuel cells. J. Power Sources 128, 185-192.
Beavers, G. S. & Joseph, D. D. 1967 Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197-207.
Bengoa, C., Montillet, A., Legentilhomme, P. & Legrand, J. 1997 Flow visualization and modelling of a filter-press type electrochemical reactor. J. Appl. Electrochem. 27, 1313-1322.
Blum, L., Meulenberg, W. A., Nabielek, H. & Wilckens, R. S. 2005 World SOFC Technology overview and benchmark. Int. J. Appl. Ceram. Tech. 2, 482-492.
Boersma, R. J. & Sammes, N. M. 1996 Computational analysis of the gas-flow distribution in solid oxide fuel cell stacks. J. Power Sources 63, 215-218.
Boersma, R. J. & Sammes, N. M. 1997 Distribution of gas flow in internally manifolded solid oxide fuel cell stacks. J. Power Sources 66, 41-45.
Brinkman, H. C. 1947 A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A1, 27-34.
Carrette, L., Friedrich, K. A. & Stimming, U. 2001 Fuel Cells – Fundamentals and Applications. Fuel Cells 1, 5-37.
Chyou, Y. P., Chung, T. D., Chan, J. S. & Shie, R. F. 2005 Integrated thermal engineering analyses with heat transfer at periphery of planar solid oxide fuel cell. J. Power Sources 139, 126-140.
de Haart, L. G. J., Vinke, I. C., Janke, A., Ringel, H. & Tietz, F. 2001 In: Yokpawa, H., and Singhal, S. C., (Eds.), Solid Oxide Fuel Cells (SOFC VII), Electrochem. Soc. Proc. The Electrochemical Society, Pennington, New Jersey, PV2001-16, 111.
Dohle, H., Jung, R., Kimiaie, N., Mergel J. & Muller, M. 2003 Interaction between the diffusion layer and the flow field of polymer electrolyte fuel cells-experiments and simulation studies. J. Power Sources 124, 371-384.
Gardner, F. J., Day, M. J., Brandon, N. P., Pashley, M. N. & Cassidy, M. 2000 SOFC technology development at Rolls-Royce. J. Power Sources 86, 122–129.
Gregor, H. 2003 Fuel cell technology handbook. CRC Press.
Grove, W. R. 1839 On voltaic series and the combination of gases by platinum. Phil. Mag. 14, 127-130.
Gupte, S. K. & Advani, S. G. 1997 Flow near the permeable boundary of a porous medium: an experimental investigation using LDA. Exp. Fluids 22, 408-422.
Hecht, E. S., Gupta, G. K., Zhu, H., Dean, A. M., Kee, R. J. & Deutschmann, O. 2005 Methane reforming kinetics within a Ni–YSZ SOFC anode support. App. Catal., A: Gen. 295, 40-51.
Hwang, J. J., Chen, C. K. & Lai, D. Y. 2005 Detailed characteristic comparison between planar and MOLB-type SOFCs. J. Power Sources 143, 75–83.
Iwata, M., Hikosaka, T., Morita, M., Iwanari, T., Ito, K., Onda, K., Esaki, Y., Sakaki, Y. & Nagata, S. 2000 Performance analysis of planar-type unit SOFC considering current and temperature distributions. Solid State Ionics 132, 297-308.
Ji, Y., Yuan, K., Chung, J. N. & Chen Y. C. 2006 Effects of transport scale on heat/mass transfer and performance optimization for solid oxide fuel cells. J. Power Sources In press.
Kee, R. J., Korada, P., Walters, K. & Pavol, M. 2002 A generalized model of the flow distribution in channel networks of planar fuel cells. J. Power Sources 109, 148-159.
Kim, S., Choi, E. & Cho, Y. I. 1995 The effect of header shapes on the flow distribution in a manifold for electronic packaging applications. Int. Comm. Heat Mass Transfer 22, 329-341.
Larminie, J. & Dicks, A. 2000 Fuel Cell Systems Explained. John Wiely & Sons, Ltd, Chichester, England.
Lehnert, W., Meusinger, J. & Thom, F. 2000 Modeling of gas transport phenomena in SOFC anodes. J. Power Sources 87, 57-63.
Lin, Y. & Beale, S. 2003 Performance predictions in solid oxide fuel cells. 3rd Int. conference on CFD in the Minerals and Process Industries, Melbourne, 10-12 December.
Maharudrayya, S., Jayanti, S. & Deshpande, A. P. 2005 Flow distribution and pressure drop in parallel-channel configurations of planar fuel cells. J. Power Sources 144, 94-106.
Pyke, S. H., Howard, P. J. & Leah, R. T. 2002 Planar SOFC technology : stack design and development for lower cost and manufacturability. DTI research report, DTI/Pub URN 02/1350.
Recknagle, K. P., Williford, R. E., Chick, L. A., Rector, D. R. & Khaleel, M. A. 2003 Three-dimensional thermo-fluid electrochemical modeling of planar SOFC stacks. J. Power Sources 113, 109-114.
Rifkin, J. 2003 The hydrogen economy: The creation of the worldwide energy web and the redistribution of power on earth. Publisher: J. P. Tarcher (ISBN: 158421936).
Schmidt, M. 1998 The Hexis Project : Decentralised electricity generation with waste heat utilisation in the household. Fuel Cells Bulletin. 1, 9-11.
Shams, M., James, D. F. & Currie, I. G. 2003 The flow field near the edge of a model porous medium. Exp. Fluid 35, 193-198.
Singhal, S. C. & Kendall, K. 2003 High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Application, Elsevier, Kidlington, 188-189.
Stambouli, A. B. & Traversa, E. 2002 Solid Oxide Fuel Cells (SOFCs): a Review of an Environmentally Clean and Efficient Source of Energy. Renew. Sust. Energy Rev. 6, 433-455.
Vielstich, W., Lamm, A. & Gasteiger, H. A. 2003 Handbook of Fuel Cells: Fundamentals Technology and Applications. John Wiely & Sons, Ltd, Chichester, England.
Yakabe, H., Ogiwara, T., Hishinuma, M. & Yasuda, I. 2001 3-D model calculation for planar SOFC. J. Power Sources 102, 144-154.
Yoon, S. Y., Ross, J. W., Mench, M. M. & Sharp K. V. 2006 Gas-phase particle image velocimetry (PIV) for application to the design of fuel cell reactant flow channels. J. Power Sources In press.
Yuan, J., Rokni, M. & Sunden, B. 2003 Three-dimensional computational analysis of gas and heat transport phenomena in ducts relevant for anode-supported solid oxide fuel cells. Int. J. Heat Mass Transfer 46, 809-821.
National Museum of American History: http://fuelcells.si.edu/so/sofc main.htm
FZJ: http://www.fz-juelich.de/portal
顏正和 “平板式固態氧化物燃料電池雙極板之流道設計與流場觀測”,國立中央大學機械工程系,碩士論文 (2004)。
黃家明、顏正和、邱耀平和施聖洋 “固態氧化物燃料電池雙極板流體動力特性分析”,中華民國力學學會第二十九屆全國力學會,論文集光碟,新竹市國立清華大學,12月16-17日 (2005)。