跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李諾珠
Le Thi Ngoc Chuc
論文名稱: 鈀催化的異構化和內酯化
Palladium Catalyzed Isomerization and Lactonization
指導教授: 侯敦仁
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 311
中文關鍵詞: 鈀催化劑異構化漆膜化
外文關鍵詞: palladium catalyst, Isomerization, Lactonization
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本 文 的 工 作 分 為 兩 章。在 第 一 章 中,使 用 鈀(0)納 米 粒 子 實 現 了 2-alkenylbenzoic acid 衍 生 物 的 異 構 化 以 生 成(E)-烯 烴。該 反 應 的 範 圍 包括 羧 酸,酯 和 醯 胺,並 能 耐 受 苯 環 上 的 各 種 取 代 基。異 構 化 反 應 由 可 回 收 的 Pd(0) 納 米 顆 粒 催 化,該 顆 粒 由 PdCl2 原 位 制 備,並 通 過 X 射 線 粉 末 衍 射 和 掃 描 電 子 顯 微 鏡 分 析 進 行 表 征。 1H NMR 研 究 和 動 力學 建 模 支 持 逐 步 過 程。該 新 方 法 被 用 于 高 效 合 成 天 然 二 氫 異 香 豆 素。

    在 第 二 章 中,討 論 了 合 成 的 鄰 苯 二 甲 酸 酯 化 合 物。用 1,2-bis(phenylsulfinyl)ethane palladium(II) acetate (White catalyst) 氧 氣 在 DMSO 中 實 現 2-allylbenzoic acids (1) 的 烯 丙 基 氧 化 生 成 3-ethylidenephthalides (3) 或 3-vinylphthalides (4) 在 堿 性 條 件 或 酸 性 條 件 下。將 反 應 條 件 應 用 於 各 種 取 代 的 2-allylbenzoic acids。還 討 論 了 該 反 應 的 機 理。


    The work presented in this thesis has been divided into two chapters. In chapter one, isomerization of 2-alkenylbenzoic acid derivatives to give (E)-alkenes was achieved with palladium(0) nanoparticles. The scope of this reaction includes carboxylic acid, ester, and amides and tolerates various substituents on the benzene ring. This isomerization reaction was catalyzed by recyclable Pd(0) nanoparticles, prepared in situ from PdCl2 and characterized by X-ray powder diffraction and scanning electron microscopy analyses. 1H NMR studies and kinetic modeling supported a stepwise process. This new process was applied to synthesize a natural dihydroisocoumarin with good efficiency.

    In chapter two deals with the phthalide compounds synthesised. Allylic oxidation of 2-allylbenzoic acids (1) to give 3-ethylidenephthalides (3) or 3-vinylphthalides (4) was achieved with 1,2-bis(phenylsulfinyl)ethane palladium(II) acetate (White catalyst), oxygen in DMSO under the basic condition or the acidic conditon. The reaction conditions were applied to various substituted 2-allylbenzoic acids. The mechanism of this reaction is also discussed.


    Table of Contents Abstract i Acknowledgements ii Table of Contents iii List of Tables v List of Figures vi List of Schemes vii List of Appendix for chapter one viii List of Appendix for chapter two xiii List of Symbols and Abbreviations xvii Chapter One: 1 Palladium catalyzed Isomerization of 2-Alkenylbenzoic Acids 1 1.1 Introduction 1 1.2 Isomerization of benzene containing olefins 2 1.2.1 Allylbenzene isomerization reaction 2 1.2.2 Base-assisted “Carbon-Claisen” rearrangement of 4-phenyl-1-butene 2 1.2.3 Palladium catalyzed isomerization of alkenes: a pronounced influence of an o-phenol hydroxyl group 3 1.3 The reaction was carried out with 2- (3-butene)benzoic Acid 1a 6 1.4. Optimization of reaction conditions 8 1.5 Results and discussions 10 1.5.1 Isomerization of Substituted 2-(3-Butenyl)benzoic Acids 10 1.5.2 Isomerization of 2-Alkenylbenzoic Acids 12 1.5.3 Monitor the reaction 14 1.5.4 Recycling studies for the isomerization reaction of 1a 17 1.5.5 Isomerization reactions catalyzed by various Pd sources 18 1.5.6 New synthesis of dihydroisocoumarin 33 19 1.6 Summary 20 1.7 References 20 Chapter Two: 23 Palladium catalyzed Allylic Oxidation and Lactonization of 2-Allylbenzoic Acids 23 2.1 Introduction 23 2.2 Literature reviews 23 2.3 Results and discussions 26 2.3.1 Optimization of reaction conditions 26 2.3.2 Allylic oxidation of substituted 2-allylbenzoic Acids 30 2.3.3 Synthesis of 3-ethyl-6-hydroxyphthalide (6) 32 2.3.4 Mechanistic experiments 33 2.4 Summary 37 2.5 References 37 3. Experimental section for chapter one 41 3.1 General procedure for the Pd-catalyzed isomerization of o-Alkenylbenzoic acids. 41 3.2 Synthesis of Dihydroisocoumarin 33 57 3.3 References 60 4. Experimental section for chapter two 62 4.1 Synthesis of 2-Alkenylbenzoic Acids 62 4.2 General procedure for the White catalyst lactonization of 2-allylbenzoic Acids. 63 4.3 Synthesis of 3-Ethyl-6-hydroxyphthalide (6) 74 4.4 Synthesis of compound 1-D2 75 4.5 Kinetic Isotope Effect (KIE) 79 4.5.1 Procedure for kinetic isotope effect 79 4.5.2 Starting material 1 + 1 N NaOH 79 4.5.3 Starting material 1-D2 + 1 N NaOH 82 4.5.4 Kinetic isotope effect in the basis condition 84 4.5.5. Starting material 1 + 1 N HCl 84 4.6 References 88 Appendix for chapter one 82 Appendix for chapter two 191

    1.7 References

    1. (a) Trost, B. M.Angew. Chem., Int. Ed. Engl. 1995, 34, 259-281. (b) Trost, B. M.Acc. Chem. Res. 2002, 35, 695-705. (c) Arisawa, M. Chem. Pharm. Bull. 2007, 55, 1099-1118. (d) Li, C.-J.; Trost, B. M.Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 13197-13202. (e) Cadierno, V.; Crochet, P.; Garcia-Garrido, S. E.; Gimeno, J. Dalton Trans. 2010, 39, 4015-4031. (f) Lorenzo-Luis, P.; Romerosa, A.; Serrano-Ruiz, M.ACS.Catal. 2012, 2, 1079-1086. (g) Behr, A.; Vorholt, A. J.; Ostrowski, K. A.; Seidensticker, T.Green Chem. 2014, 16, 982-1006.
    2. Review: (a) Hassam, M.; Taher, A.; Arnott, G. E.; Green, I. R.; van Otterlo, W. A. L.Chem. Rev. 2015, 115, 5462-5569. (b) Larionov, E.; Li, H. H.; Mazet, C.Chem. Commun. 2014, 50, 9816-9826. (c) Donohoe, T. J.; O’Riordan, T. J. C.; Rosa, C. P.Angew. Chem., Int. Ed. 2009, 48, 1014-1017. (d) Bai, X.-F.; Song, T.; Deng, W.- H.; Wei, Y.-L.; Li, L.; Xia, C.-G.; Xu, L.-W.Synlett. 2014, 25, 417-422.
    3. Lin, L.; Romano, C.; Mazet, C.J. Am. Chem. Soc. 2016, 138, 10344-10350.
    4. Shimizu, A.; Otsu, T.; Imoto, M. Bull. Chem. Soc. Jpn 1968, 41, 953-959.
    5. (a) Tooley, P.A.; Arndt, L. W.; Darensberg, M. Y. J. Am. Chem. Soc. 1985, 107, 2422-2427. (b) Bricout, H.; Mortreux, A.; Monflier, E. J. Organomet. Chem. 1998, 553, 469-471. (c) Satyanarayana, N.; Periasamy, M. J. Organomet. Chem. 1987, 319, 113-118 (d) Averbuj, C.; Eisen, M. S. J. Am. Chem. Soc. 1999, 121, 8755-8759 (e) Shaviv, E.; Botoshansky, M.; Eisen, M. S. J. Organomet. Chem. 2003, 683, 165-180 (f) Arisawa, M.; Terada, Y.; Nakagawa, M.; Nishida,A. Angew. Chem., Int. Ed. 2002, 41, 4732-4734. (g) Morrill, T. C.; D’Souza, C. A. Organometallics. 2003, 22, 1626-1629. (h) Baxendale, I. R.; Lee, A.-L.; Ley, S. V. Synlett 2002, 516-518.
    6. Newcomb, M.; Vieta, R. S. J. Org. Chem. 1980, 45, 4793-4795.
    7. Fan, J.; Wan, C.; Wang, Q.; Gao, L.; Zheng, X.; Wang, Z. Org. Biomol. Chem. 2009, 7, 3168-3172.
    8. Korte, D. E.; Wirth, R. K.; Hegedus, L. S. J. Org. Chem. 1977, 42, 1329-1336.
    9. Baghdanov, V. M.; Hauser, F. M. J. Org. Chem. 1988, 53, 4676-4681.
    10. Mal, D.; Majumdar, G.; Pal, R. J. Chem. Soc., Perkin Trans. 1 1994, 1115-1116.
    11. Li, Y.; Jardine, K. J.; Tan, R.; Song, D.; Dong, V. M. Angew. Chem., Int. Ed. 2009, 48, 9690-9692.
    12. Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic Chemistry, University Science Books: Sausalito, 2006, 112.
    13. Thompson, H. W.; Naipawer, R. E. J. Am. Chem. Soc. 1973, 95, 6379-6386.
    14. Greenhalgh, M. D.; Thomas, S. P. Chem. Commun. 2013, 49, 11230-11232.
    15. (a) Newcomb, M.; Vieta, R. S. J. Org. Chem. 1980, 45, 4793-4795. (b) Yamakawa, T.; Yoshikai, N. Chem. Asian J. 2014, 9, 1242-1246.
    16. Hassam, M.; Taher, A.; Arnott, G. E.; Green, I. R.; van Otterlo, W. A. L. Chem. Rev. 2015, 115, 5462-5569.
    17. Qian, H.-S.; Antonietti, M.; Yu, S.-H. Adv. Funct. Mater .2007, 17, 637-643.
    18. (a) Duan, Y.; Zheng, M.; Li, D.; Deng, D.; Wu, C.; Yang, Y. RSC Adv. 2017, 7, 3443-3449. (b) Hanrieder, E. K.; Jentys, A.; Lercher, J. A. ACS Catal. 2015, 5, 5776-5786. (c) Selivanova, A. V.; Tyurin, V. S.; Beletskaya, I. P. ChemPlusChem 2014, 79, 1278-1283.
    19. (a) Kim, B.-H.; Lee, S.-H.; Han, S.-W.; Ahn, S.; Noh, J.; Park, J. B. Mater. Express 2016, 6, 61-68. (b) Abate, S.; Perathoner, S.; Centi, G. Catal. Today 2012, 179, 170-177. (c) Cookson, J. Platinum Met. Rev. 2012, 56, 83-98.
    20. Kang, Y.-B.; Chen, X.-M.; Yao, C.-Z.; Ning, X.-S. Chem. Commun. 2016, 52, 6193-6196.
    21. (a) Kazlauskas, R.; Mulder, J.; Murphy, P. T.; Wells, R. J .Aust. J. Chem.1980, 33, 2097-2101. (b) Amico, V.; Biondi, D.; Cunsolo, F.; Ruberto, G.J. Nat. Prod.1990, 53, 1379-1382.
    22. (a) Senboku, H.; Nagakura, K.; Fukuhara, T.; Hara, S.Tetrahedron 2015, 71, 3850-3856. (b) Vogel, S.; Stembera, K.; Hennig, L.; Findeisen, M.; Giesa, S.; Welzel, P.; Lampilas, M. Tetrahedron 2001, 57, 4139-4146.
    23. (a) Medina, F. G.; Marrero, J. G.; Macías-Alonso, M.; Gonzá lez, M. C.; Có rdova-Guerrero, I.; García, A. G. T.; Osegueda-Robles, S. Nat Prod. Rep. 2015, 32, 1472-1507. (b) Thakur, A.; Singla, R.; Jaitak, V. Eur. J. Med. Chem. 2015, 101, 476-495.

    2.5 References
    1. (a) Pang, X.; Lin, X.; Yang, J.; Zhou, X.; Yang, B.; Wang, J.; Liu, Y. J. Nat. Prod. 2018, 81, 1860-1868; (b) Kamauchi, H.; Shiraishi, Y.; Kojima, A.; Kawazoe, N.; Kinoshita, K.; Koyama, K. J. Nat. Prod. 2018, 81, 1290-1294; (c) Zou, J.; Chen, G.-D.; Zhao, H.; Huang, Y.; Luo, X.; Xu, W.; He, R.-R.; Hu, D.; Yao, X.-S.; Gao, H. Org. Lett. 2018, 20, 884-887; (d) Zheng, N.; Yao, F.; Liang, X.; Liu, Q.; Xu, W.; Liang, Y.; Liu, X.; Li, J.; Yang, R. Nat. Prod. Res. 2018, 32, 755-760; (e) Wei, W.; Xu, W.; Yang, X.-W. J. Asian Nat. Prod. Res. 2017, 19, 704-711; (f) Fang, W.; Wang, J.; Wang, J.; Shi, L.; Li, K.; Lin, X.; Min, Y.; Yang, B.; Tang, L.; Liu, Y.; Zhou, X. J. Nat. Prod. 2018, 81, 1405-1410.
    2 (a) Beck, J. J.; Chou, S.-C. J. Nat. Prod. 2007, 70, 891-900. (b) Ran, X.; Ma, L.; Peng, C.; Zhang, H.; Qin, L.-P. Pharm Biol. 2011, 49, 1180-1189. (c) Ito, C.; Itoigawa, M.; Aizawa, K.; Yoshida, K.; Ruangrungsi, N.; Furukawa, H. J. Nat. Prod. 2009, 72, 1202-1204. (d) Kobayashi, M.; Fujita, M.; Mitsuhashi, H. Chem. Pharm. Bull. 1987, 35, 1427-1433.
    3. (a) da Silva Maia, A. F.; Siqueira, R. P.; de Oliveira, F. M.; Ferreira, J. G.; da Silva, S. F.; Caiuby, C. A. D.; de Oliveira, L. L.; de Paula, S. O.; Souza, R. A. C.; Guilardi, S.; Bressan, G. C.; Teixeira, R. R. Bioorg. Med. Chem. Lett. 2016, 26, 2810-2816. (b) Kam, A.; Li, K. M.; Razmovski-Naumovski, V.; Nammi, S.; Chan, K.; Li, Y.; Li, G. Q. Curr. Med. Chem. 2012, 19, 1830-1845. (c) Donkor, P. O.; Chen, Y.; Ding, L.; Qiu, F. J. Ethnopharmacol. 2016, 194, 530-548.
    4. (a) Eildal, J. N. N.; Andersen, J.; Kristensen, A. S.; Jørgensen, A. M.; Bang-Andersen, B.; Jørgensen, M.; Strømgaard, K. J. Med. Chem. 2008, 51, 3045-3048. (b) Rathwell, K.; Brimble, M. A. Synthesis 2007, 5, 643-662. (c) Brimble, M. A.; Nairn, M. R.; Prabaharan, H. Tetrahedron 2000, 56, 1937-1992. (d) McNulty, J.; Keskar, K. Org. Biomol. Chem. 2013, 11, 2404-2407. (e) Molnár, B.; Simig, G.; Bakó, T.; Dancsó, A.; Volk, B. Tetrahedron Lett. 2012, 53, 2922-2924. (f) Garibay, P.; Vedsø, P.; Begtrup, M.; Hoeg-Jensen, T. J. Comb. Chem. 2001, 3, 332-340. (g) Faigl, F.; Thurner, A.; Molnár, B.; Simig, G.; Volk, B. Org. Process Res. Dev. 2010, 14, 617-622. (h) Kobayashi, S.; Tamanoi, H.; Hasegawa, Y.; Segawa, Y.; Masuyama, A. J. Org. Chem. 2014, 79, 5227-5238.
    5. (a) Cui, H.; Liu, Y.; Li, J.; Huang, X.; Yan, T.; Cao, W.; Liu, H.; Long, Y.; She, Z. J. Org. Chem. 2018, 83, 11804-11813; (b) Giap, T. H.; Dung, N. A.; Thoa, H. T.; Dang, N. H.; Dat, N. T.; Hang, N. T. M.; Van Cuong, P.; Van Hung, N.; Van Minh, C.; Mishchenko, N. P.; Fedoreev, S. A.; Thanh, L. N. Chem. Nat. Compd. 2018, 54, 34-37; (c) Van Nguyen, K.; Duong, T.-H.; Nguyen, K. P. P.; Sangvichien, E.; Wonganan, P.; Chavasiri, W. Tetrahedron Lett. 2018, 59, 1348-1351; (d) Wu, Y.-Z.; Zhang, H.-W.; Sun, Z.-H.; Dai, J.-G.; Hu, Y.-C.; Li, R.; Lin, P.-C.; Xia, G.-Y.; Wang, L.-Y.; Qiu, B.-L.; Zhang, J.-F.; Ge, G.-B.; Lin, S. Eur. J. Med. Chem. 2018, 145, 717-725; (e) Yao, F.; Liang, X.; Liu, Q.; Xu, W.; Liang, Y.; Liu, X.; Li, J.; Yang, R. Nat. Prod. Res. 2018, 32, 755-760.
    6. (a) Karmakar, R.; Pahari, P.; Mal, D. Chem. Rev. 2014, 114, 6213-6284. (b) Lin, G.; Chan, S. S.-K.; Chung, H.-S.; Li, S.-L., In Studies in Natural Products Chemistry, Atta ur, R., Ed. Elsevier: 2005; Vol. 32, pp 611-669.
    7. (a) Ziegert, R. E.; Toräng, J.; Knepper, K.; Bräse, S. J. Comb. Chem. 2005, 7, 147-169. (b) Antonia Di, M.; Laura, P.; Antonio, M. Curr. Org. Chem. 2012, 16, 2302-2320.(c) Willis, M. C. Angew. Chem., Int. Ed. 2010, 49, 6026-6027.
    8. (a) Mahendar, L.; Satyanarayana, G. J. Org. Chem. 2015, 80, 7089-7098; (b)
    Mahendar, L.; Satyanarayana, G. J. Org. Chem. 2016, 81, 7685-7691; (c) Dussart, N.; Trinh, H. V.; Gueyrard, D. Org. Lett. 2016, 18, 4790-4793; (d) Dow, G. T.; Thoden, J. B.; Holden, H. M. Protein Science 2016, 25, 2282-2289; (e) Yang, J.; Yoshikai, N. J. Am. Chem. Soc. 2014, 136, 16748-16751; (f) Fei, X.-D.; Ge, Z.-Y.; Tang, T.; Zhu, Y.-M.; Ji, S.-J. J. Org. Chem. 2012, 77, 10321-10328; (g) Kuriyama, M.; Ishiyama, N.; Shimazawa, R.; Shirai, R.; Onomura, O. J. Org. Chem. 2009, 74, 9210-9213; (h) Roiser, L.; Waser, M. Org. Lett. 2017, 19, 2338-2341; (i) Zhang, B.; Xu, M.-H.; Lin, G.-Q. Org. Lett. 2009, 11, 4712-4715.
    9. (a) Korte, D. E.; Hegedus, L. S.; Wirth, R. K. J. Org. Chem. 1977, 42, 1329-1336.
    (b) Larock, R. C.; Hightower, T. R. J. Org. Chem. 1993, 58, 5298-5300.
    10. (a) Kopp, F.; Wunderlich, S.; Knochel, P. Chem. Commun. 2007, 2075-2077. (b)
    Miles, K. C.; Le, C. C.; Stambuli, J. P. Chem. Eur. J. 2014, 20, 11336-11339.
    11. Liu, J.; Miotto, R. J.; Segard, J.; Erb, A. M.; Aponick, A. Org. Lett. 2018, 20, 3034
    -3038.
    12. Takenaka, K.; Akita, M.; Tanigaki, Y.; Takizawa, S.; Sasai, H. Org. Lett. 2011, 13,
    3506-3509.
    13. Trend, R. M.; Ramtohul, Y. K.; Stoltz, B. M. J. Am. Chem. Soc. 2005, 127, 17778-
    17788.
    14. Krätzschmar, F.; Kaßel, M.; Delony, D.; Breder, A. Chem. Eur. J. 2015, 21, 7030-
    7034.
    15. (a) Chen, M. S.; White, M. C. J. Am. Chem. Soc. 2004, 126, 1346-1347. (b) Chen,
    M. S.; Prabagaran, N.; Labenz, N. A.; White, M. C. J. Am. Chem. Soc. 2005, 127, 6970-
    6971. (c) Fraunhoffer, K. J.; Prabagaran, N.; Sirois, L. E.; White, M. C. J. Am. Chem.
    Soc. 2006, 128, 9032-9033. (d) Fraunhoffer, K. J.; White, M. C. J. Am. Chem. Soc. 2007, 129, 7274-7276. (e) Covell, D. J.; White, M. C. Angew. Chem., Int. Ed. 2008, 47, 6448-6451. (f) Young, A. J.; White, M. C. J. Am. Chem. Soc. 2008, 130, 14090-14091. (g) Reed, S. A.; White, M. C. J. Am. Chem. Soc. 2008, 130, 3316-3318. (h) Reed, S. A.; Mazzotti, A. R.; White, M. C. J. Am. Chem. Soc. 2009, 131, 11701-11706. (i) Rice, G. T.; White, M. C. J. Am. Chem. Soc. 2009, 131, 11707-11711. (j) Strambeanu, I. I.; White, M. C. J. Am. Chem. Soc. 2013, 135, 12032-12037. (k) Osberger, T. J.; White, M. C. J. Am. Chem. Soc. 2014, 136, 11176-11181. (l) Pattillo, C. C.; Strambeanu, I. I.; Calleja, P.; Vermeulen, N. A.; Mizuno, T.; White, M. C. J. Am. Chem. Soc. 2016, 138, 1265-1272.
    16. Delcamp, J. H.; Brucks, A. P.; White, M. C. J. Am. Chem. Soc. 2008, 130, 11270-
    11271.
    17. Chen, H.; Yang, W.; Wu, W.; Jiang, H. Org. Biomol. Chem. 2014, 12, 3340-3343.
    18. Lima, D. D.; Oliveira, J. P.; Seabra, M. E. P.; Andrade, M. A.; Baetas, A. C.; Borges,
    R. S. J. Comput. Theor. Nanosci. 2011, 8, 97-101.
    19. (a) Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 734-736. (b) Baldwin, J.
    E.; Lusch, M. J. Tetrahedron 1982, 38, 2939-2947.
    20. Westheimer, F. H. Chem. Rev. 1961, 61, 265-273.
    21. (a) Anslyn, E. V.; Dougherty, D. A., Modern Physical Organic Chemistry.
    University Science Books: Sausalito, California, 2006; p 421-428. (b) Carey, F. A.; Sundberg, R. J., In Advanced Organic Chemistry, Part A: Structure and Mechanisms, 5 ed.; Springer US: 2007; p 332.
    22. Larionov, E.; Li, H.; Mazet, C. Chem. Commun. 2014, 50, 9816-9826.
    23. Hassam, M.; Taher, A.; Arnott, G. E.; Green, I. R.; van Otterlo, W. A. L. Chem.
    Rev. 2015, 115, 5462-5569.
    24. Liang, Y.-F.; Jiao, N. Acc. Chem. Res. 2017, 50, 1640-1653.

    QR CODE
    :::