跳到主要內容

簡易檢索 / 詳目顯示

研究生: 康軒晨
Syuan-Chen Kang
論文名稱: 二維熱流場對移動刀具之遮罩式微電化學加工模擬與分析
指導教授: 洪勵吾
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 115
中文關鍵詞: 遮罩式電化學加工有限元素法移動式刀具模擬
外文關鍵詞: through-mask electrochemical micro-machining, finite element method, moving tool, simulation
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 遮罩式微電化學加工之優點在於欲加工不同之成品只需透過改變遮罩外型即可完成不同幾何形狀之加工,然而,目前遮罩式微電化學加工的發展都僅止於靜態加工,刀具的大小需與欲加工物一致,本文主要藉由縮小刀具,再給定一穩定之移動速度,一方面可以降低刀具生產之成本,另一方面觀察成品是否可以更均勻完整,利用有限元素法創建熱流場與電場之二維模型,討論不同電解液流速、施加電壓、遮罩厚度對加工外形之影響
    模擬結果顯示,電壓越大時,加工深度越深,島狀比率隨電壓增加而減小;電解液流速愈低,加工區電解液溫度愈高,島狀比率也隨之上升;遮罩厚度愈厚,遮罩之遮蔽能力愈好,局部電流密度愈小,加工深度愈淺,島狀比率愈小;移動速度越慢,加工時間更長,可使加工深度越深,越均勻,島狀比率越小。比較在相同加工深度下,固定式刀具比動態刀具有較少的加工時間,但動態刀具可使加工孔有較小的島狀比率。


    Through-mask electrochemical micro machining (TMEMM) is different from the normal Electrochemical micro machining (EMM). The design expense of the electrode tool can be saved because the electrode tool won’t be affected by the shape of the ending product. Without changing the electrode tool, TMEMM can fulfill end product with any shape by only changing the shape of the electric insulated mask. The development of through-mask electrochemical micro-machining is restricted in the static processing. The size of the tool needs to be the same as the processing zone. However, the electrode of the tool is required to be a good conductivity metal, which is expensive. Based on the cost, in this study, I try to reduce the size of the tool along with a moving speed. The electric field model with temperature field and flow field of through-mask electrochemical micro-machining with a moving tool is simulated by using finite element method. Effects of parameters, such as: applied voltage, velocity of electrolyte, mask thickness and moving speed etc…, on the resulted holes are investigated.
    The simulation results show that the higher the voltage, the deeper the processing depth, and the island ratio decreases with the increase of voltage; the lower the electrolyte flow rate, the higher the electrolyte temperature in the processing zone, and the island ratio increases; the mask thickness increases. Thicker, the better the shielding ability of the mask, the smaller the local current density, the shallower the processing depth, the smaller the island ratio; the slower the moving speed, the longer the processing time, the deeper the processing depth, the more uniform, the island ratio the smaller. Compared to the same machining depth, the fixed tool has less machining time than the moving tool, but the moving tool can make the machining hole have a smaller island ratio.

    目錄 摘要 i Abstract ii 目錄 iv 圖目錄 vii 表目錄 xii 符號說明 xiii 第一章 緒論 1 1-1 前言 1 1-1-1 微電化學加工 3 1-1-2 遮罩式微電化學加工 4 1-2 文獻回顧 5 1-3 研究目的 9 第二章 理論分析 11 2-1 基本理論 11 2-1-1 電流密度 12 2-1-2 電流分佈 12 2-2 電解液導電度 13 2-3 底切與島狀 15 2-4 電化學加工之建模需求 15 第三章 數值方法 18 3-1 有限元素法之電場與熱流分析 18 3-2 模型定義與假設 19 3-3 模型建立 20 3-3-1 動態遮罩式微電化學加工模型建立......………………………….21 3-4 二維電場與熱流場模型 21 3-4-1 電場之模型設置 22 3-4-2 流場之模型設置 22 3-4-3 溫度場之模型設置 24 3-5 變形幾何模型 25 3-6 計算流程 26 第四章 結果與討論 28 4-1 網格收斂性驗證 28 4-1-1 驗證用之模型設定與建立 28 4-1-2 網格收斂性測試 29 4-2 電壓對加工形狀的影響 30 4-3 電解液流速對加工形狀的影響 33 4-4 遮罩厚度對加工形狀的影響 36 4-5 刀具移動速度在動態刀具對加工形狀的影響……………………………37 4-6 動態與靜態刀具加工後成型之比較………………………….……………...39 第五章 結論 41 5-1 結論 41 5-2 未來展望 43 參考文獻 43   圖目錄 圖1-1  典型的電化學加工系統 52 圖1-2  典型的遮罩式電化學加工系統 53 圖1-3  移動刀具之遮罩式微電化學加工示意圖 53 圖1-4  移動刀具之遮罩式微電化學加工機台 54 圖1-5  動態加工之加工過程、加工工件及加工成品 55 圖2-1  遮罩式微電化學加工之底切示意圖 56 圖2-2  電化學加工建模過程之物理現象 56 圖3-1  動態模型假設示意圖 57 圖3-2  單一合一件之幾何外型,紅線為虛擬陰極 58 圖3-3  動態之遮罩式微電化學加工模型示意圖 59 圖3-4  移動刀具之網格形變過程 60 圖3-5  遮罩式微電化學加工之模擬項目 61 圖3-6  動態模型模擬之流程圖 62 圖4-1  網格收斂測試之參考點 63 圖4-2  電解液流速網格收斂性測試 63 圖4-3  電壓之網格收斂性測試 64 圖4-4  溫度之網格收斂性測試 64 圖4-5  網格分佈圖 65 圖4-6  固定流速0.05m/s之速度分佈 65 圖4-7  加工時間在0 s時之電場分布 66 圖4-8  加工時間在5 s時之電場分布 66 圖4-9  電壓15V下之電場分佈 67 圖4-10  電壓15V下之溫度分佈 67 圖4-11  電壓15V下電流密度之分佈 68 圖4-12  電壓15V加工後之幾何外型 68 圖4-13  電壓12V下之電場分佈 69 圖4-14  電壓12V下之溫度分佈 69 圖4-15  電壓12V下之電流密度分佈 70 圖4-16  電壓12V下加工後之幾何外型 70 圖4-17  電壓9V下之電場分佈 71 圖4-18  電壓9V下之溫度分佈 71 圖4-19  電壓9V下之電流密度分佈 72 圖4-20  電壓9V下加工後之幾何外型 72 圖4-21  電壓6V下之電場分佈 73 圖4-22  電壓6V下之溫度分佈 73 圖4-23  電壓6V下之電流密度分佈 74 圖4-24  電壓6V下加工後幾何外型 74 圖4-25  電壓25 V下之電場分佈 75 圖4-26  電解液流速0.0375 m/s下之速度分佈 75 圖4-27  電解液流速0.0375 m/s下之加工孔內流線圖 76 圖4-28  電解液流速0.0375 m/s下之溫度分佈 76 圖4-29  電解液流速0.0375 m/s下電流密度之分佈 77 圖4-30  電解液流速0.0375 m/s下加工後之幾何外型 77 圖4-31  電解液流速0.05 m/s下之速度分佈 78 圖4-32  電解液流速0.05 m/s下之加工孔內流線圖 78 圖4-33  電解液流速0.05 m/s下之溫度分佈 79 圖4-34  電解液流速0.05m/s下電流密度之分布 79 圖4-35  電解液流速0.05 m/s下加工後之幾何外型 80 圖4-36  電解液流速0.08 m/s下之速度分佈 80 圖4-37  電解液流速0.08 m/s下之加工孔內流線圖 81 圖4-38  電解液流速0.08 m/s下之溫度分佈 81 圖4-39  電解液流速0.08 m/s下電流密度之分佈 82 圖4-40  電解液流速0.08 m/s下加工後之幾何外型 82 圖4-41  電解液流速0.4 m/s下之速度分佈 83 圖4-42  電解液流速0.4 m/s下之加工孔內流線圖 83 圖4-43  電解液流速0.4 m/s下之溫度分佈 84 圖4-44  電解液流速0.4 m/s下電流密度之分佈 84 圖4-45  電解液流速0.4 m/s下加工後之幾何外型 85 圖4-46  遮罩厚度15μm下之加工孔內流線圖 85 圖4-47  遮罩厚度15μm下之溫度分佈 86 圖4-48  遮罩厚度15μm下之電流密度分佈 86 圖4-49  遮罩厚度15μm下加工後之幾何外型 87 圖4-50  遮罩厚度45μm下之加工孔內流線圖 87 圖4-51  遮罩厚度45μm下之溫度分佈 88 圖4-52  遮罩厚度45μm下之電流密度分佈 88 圖4-53  遮罩厚度45μm下加工後之幾何外型 89 圖4-54  刀具移動時的電場變化 90 圖4-55  刀具移動速度0.48mm/s,溫度分佈圖 91 圖4-56  刀具移動速度0.48mm/s時,電流密度圖 91 圖4-57  刀具移動速度0.48mm/s下加工後之幾何外型 92 圖4-58  刀具移動速度0.32mm/s,溫度分佈圖 92 圖4-59  刀具移動速度0.32mm/s時,電流密度圖 93 圖4-60  刀具移動速度0.32mm/s下加工後之幾何外型 93 圖4-61  靜態刀具之電場分佈 94 圖4-62  靜態刀具之速度分佈 94 圖4-63  靜態刀具之溫度分佈 95 圖4-64  靜態刀具之電流密度圖 95 圖4-65  動態刀具之電流密度圖 96 圖4-66  靜態刀具之加工後之幾何外型 96   表目錄 表2-1  電化學加工之建模需求 48 表4-1  電解液之材料性質 49 表4-2  模型之幾何尺寸及加工參數 49 表4-3  網格收斂性測試模型 50 表4-4  網格收斂性測試結果 50 表4-5  不同電壓對加工形狀影響的結果 50 表4-6  不同電解液流速對加工形狀影響的結果 51 表4-7  不同遮罩厚度對加工形狀影響的結果 51

    [1] 楊龍杰著,認識微機電,滄海書局,台中市,2001年。
    [2] 徐泰然著,微機電系統與微系統-設計與製造,朱銘祥譯,美商麥格羅‧希爾國際股份有限公司台灣分公司,台北市,2003年。
    [3] B.Bhattacharyya,J. Munda and M. Malapati, “Advancement in electrochemical micro-machining,”International Journal of Machine Tools and Manufacture, Vol.44, No. 15, pp. 1577-1589, 2004.
    [4] 黃暐倫,“利用遮罩式電化學加工製作穿孔之最佳化參數分析”,國立中央大學機械所,碩士論文,2016年。
    [5] 陳千惠,“移動刀具之遮罩式微電化學加工模擬與分析”,國立中央大學機械所,碩士論文,2016年。
    [6] X.L. Chen, N.S. Qu, H.S. Li and D. Zhu, “The fabrication and application of a PDMS micro through-holes mask in electrochemical micromanufacturing,” Advances in Mechanical Engineering, Vol. 6,Article ID 943092, 2014.
    [7] M.Dattaand D. Landolt, “Fundamental aspects and applications of electrochemical microfabrication,” ElectrochimicaActa, Vol.45, No.15-16, pp.2535-2558, 2000.
    [8] C.Vuik, and C.Cuvelier,“Numerical solution of an etching problem,” Journal of Computational Physics, Vol. 59, No.2, pp. 247-263, 1985.
    [9] R. V.Shenoy and M. Datta, “Effect of mask wall angle on shape evolution during through‐mask electrochemical micromachining,”Journal of the Electrochemical Society, Vol. 143, No. 2, pp. 544-549, 1996.
    [10] R. V.Shenoy,M. Datta and L.T. Romankiw, “Investigation of island formation during through‐mask electrochemical micromachining,”Journal of the Electrochemical Society, Vol. 143, No. 7,pp. 2305-2309, 1996.
    [11] J.Liu,D.Zhu, N.S.Qu and H.S.Li, “Micro multiple holes produced by through-mask electrochemical machining in metal sheets,”Electromachining & Mould, Vol. 3, pp. 37-39, 2008.
    [12] D. Zhu, N.S. Qu, H.S. Li, Y.B. Zeng, D.L. Li and S.Q. Qian, “Electrochemical micromachining of microstructures of micro hole and dimple array,”CIRP Annals-Manufacturing Technology, Vol. 58, No.1, pp.177-180, 2009.
    [13] S.Q.Qian, D. Zhu, N.S. Qu, H.S. Li and D.S. Yan, “Generating micro-dimples array on the hard chrome-coated surface by modified through mask electrochemical micromachining,”The International Journal of Advanced Manufacturing Technology, Vol. 47, No.9, pp. 1121-1127, 2010.
    [14] L.Wang, Q.D.Wang, X.Q.Hao, Y.C.Ding and B.H.Lu, “Finite element simulation and experimental study on the through-mask electrochemical micromachining (EMM) process,”The International Journal of Advanced Manufacturing Technology, Vol. 51, No.1, pp. 155-162, 2010.
    [15] D.L.Li, D. Zhu and H.S. Li, “Microstructure of electrochemical micromachining using inert metal mask,”The International Journal of Advanced Manufacturing Technology, Vol. 55, No.1, pp. 189-194, 2011.
    [16] A. Ivanov, “Simulation of electrochemical etching of silicon with COMSOL,”Proceedings of COMSOL Conference, Stuttgart, Germany,2011.
    [17] A. Ivanov and U. Mescheder,“Dynamic simulation of electrochemical etching of silicon,”Proceedings of COMSOL Conference, Milan, Italy, 2012.
    [18] A. Ivanov and U. Mescheder, “Primary current distribution model for electrochemical etching of silicon through a circular opening,”Proceedings of COMSOL Conference, Grenoble, France, 2015.
    [19] C.Winkelmannand W. Lang,“Influence of the electrode distance and metal ion concentration on the resulting structure in electrochemical micromachining with structured counter electrodes,”International Journal of Machine Tools and Manufacture,Vol.72, pp.25-31, 2013.
    [20] A. D.Davydov, T. B. Kabanovaaand V. M. Volgina, “Modeling of through-mask electrochemical micromachining,”Chemical Engineering, Vol.41, pp.85-90, 2014.
    [21] N. Qu,X. Chen, H. Li and Y.Zeng,“Electrochemical micromachining of micro-dimple arrays on cylindrical inner surfaces using a dry-film photoresist,”Chinese Journal of Aeronautics, Vol.27, No. 4, pp. 1030-1036, 2014.
    [22] X.L. Chen, N.S. Qu, H.S. Li and Z.N. Guoc, “Removal of islands from micro-dimple arrays prepared by through-mask electrochemical micromachining,”PrecisionEngineering,Vol. 39, pp. 204-211, 2015.
    [23] S. Qian, and F. Ji,“Investigation on the aluminum-alloy surface with micro-pits array generating by through double mask electrochemical machining,”AASRI International Conference on Industrial Electronics and Applications, pp.59-62, London UK, 2015.
    [24] V.K. Jainand D. Gehlot, “Anode shape prediction in through-mask-ecmm using FEM,”Machining Science and Technology, Vol. 19, No. 2, pp. 286-312, 2015.
    [25] X. Zhang,N.Qu, H. Li and Z. Xu,“Investigation of machining accuracy of micro-dimples fabricated by modified microscale pattern transfer without photolithography of substrates,”The International Journal of Advanced Manufacturing Technology, Vol. 81, No.9, pp. 1475-1485, 2015.
    [26] J. Liu, D. Zhu, L. Zhao and Z. Xu, “Experimental investigation on electrochemical machining of γ-TiAl intermetallic,” 15th Machining Innovations Conference for Aerospace Industry, pp. 20-24, 2015, Hannover, Germany.
    [27] 田福助著,電化學-理論與應用,高立圖書有限公司,台北市,1996年。
    [28] J. F.Thorpe and R. D. Zerkle, “Analytic determination of the equilibrium electrode gap in electrochemical machining,”International Journal of Machine Tool Design and Research, Vol. 9, No. 2, pp. 131-144, 1969.

    [29] S.Hinduja and M. Kunieda. “Modelling of ECM and EDM processes,”CIRP Annals-Manufacturing Technology, Vol. 62, No. 2, pp.775-797, 2013.

    [30] 中仿科技公司:COMSOL Multiphysics V4.x 几何建模用戶指南,2010年,取自:www.CnTech.com.cn。
    [31] M. A.Bejar, and F. Gutierrez,“On the determination of current efficiency in electrochemical machining with a variable gap,” Journal of Materials Processing Technology,Vol. 37, No.1,pp.691-699, 1993.
    [32] S. J. Lee, “COMSOL in electrochemical applications,” Proceedings of COMSOL Conference, Taipei, Taiwan, 2013.
    [33] T. Isono, “Density, viscosity, and electrolytic conductivity of concentrated aqueous electrolyte solutions at several temperatures. Alkaline-earth chlorides, lanthanum chloride, sodium chloride, sodium nitrate, sodium bromide, potassium nitrate, potassium bromide, and cadmium nitrate,” Journal of Chemical and Engineering Data, Vol. 29, No. 1, pp. 45-52, 1984.
    [34] 許世壁、邱創雄著,工程數學,高立圖書有限公司,新北市,8.17-8.34 頁,2011年。
    [35] T. Isono, “Density, viscosity, and electrolytic conductivity of concentrated aqueous electrolyte solutions at several temperatures. Alkaline-earth chlorides, lanthanum chloride, sodium chloride, sodium nitrate, sodium bromide, potassium nitrate, potassium bromide, and cadmium nitrate,” Journal of Chemical and Engineering Data, Vol. 29, No. 1, pp. 45-52, 1984.

    QR CODE
    :::