| 研究生: |
黃品玄 Pin-Hsun Huang |
|---|---|
| 論文名稱: |
可規劃式維特比解碼器之設計與實現 Design and Implementation of a Reconfigurable Viterbi Decoder |
| 指導教授: |
蔡宗漢
Tsung-Han Tsai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 89 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 迴旋碼 、維特比演算法 、可規劃式 |
| 外文關鍵詞: | convolutional code, viterbi algorithm, reconfigurable |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們著重於可規劃式維特比解碼器的發展。我們先介紹我們所提出的可規劃式維特比解碼器。在設計的過程中,我們會探討實現上的要素且選定我們所要採用的架構;接著我們以Matlab程式驗證整個解碼運作的過程,並以Verilog硬體描述語言來模擬及驗證電路的正確性。最後,我們以Altera FLEX 10K200E來實現我們的設計。
In this thesis, we focus on the development of the Reconfigurable Viterbi Decoder (RVD). Hence, we will introduce the concept of RVD. In the realization of RVD, we discuss the implementation issues and the proposed architecture firstly. Then, the decoding process is simulated by using Matlab and verified by Verilog HDL. Finally, the decoder is realized by the FPGA device.
[1]E. Biglieri, D. Divsalar, P. J. Mclane and M. K. Simon, Introduction to trellis-coded modulation with applications, Maxwell Macmillan, Canada, 1991.
[2]S. Lin and D. J. Costello, Jr., Error Control Coding, Prentice-Hall, New Jersey, 1982
[3]R. E. Ziemer, R. L. Peterson, Introduction to Digital Communication, Macmillan, New York, 1992.
[4]A. J. Viterbi, “Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm,” IEEE Trans. on Information Theory, Vol. IT-13, pp. 260-269, April 1967.
[5]A. J. Viterbi, “Convolutional Codes and Their Performance in Communication Systems,” IEEE Trans. on Communication Technology, Vol. COM-19, pp. 751-772, October 1971.
[6]G. D. Forney, “The Viterbi Algorithm,” Proceedings of the IEEE, Vol. 61, pp268-278, March 1973.
[7]G. D. Forney, “Convolutional Codes II: Maximum Likelihood Decoding,” Information and Control, Vol. 25, pp. 222-226, July 1974.
[8]Andries P. Hekstra, “An alternative to metric rescaling in Viterbi decoders,” IEEE Trans. on Commu., vol. COM-37, no. 11, pp. 1220-1222, Nov. 1989.
[9]C. Shung, P. Siegel, G. Ungerbock, and H. Thapar, “VLSI Architectures for Metric Normalization in the Viterbi Algorithm,” in Proceedings of the IEEE International Conference on Communications, pp. 1723-1728, IEEE, 1990.
[10]Ivan M. Onyszchuk, “Truncation Length for Viterbi Decoding,” IEEE trans. on Commu., vol. COM-39, pp. 1023-1026, July 1991.
[11]P. J. Black and T. H. Y. Meng, “Hybrid Survivor Path Architecture for Viterbi Decoders,” in Proc. ICASSP 93, 1993, pp. I-433-I-436.
[12]J. Sparso, H. J. Jorgensen, E. Paaske, S. Pedersen and T. R. Petersen, “ An Area-Efficient Topology for VLSI Implementation of Viterbi Decoders and Other Shuffle-Exchange Type structures,” IEEE Journal of Solid-State Circuits, vol. 26, no. 2, Feb. 1991.
[13]M. Boo, F. Arguello, J. D. Bruguera, R. Doallo and E. L. Zapata, “High-Performance VLSI Architecture for the Viterbi Algorithm,” IEEE Trans. on Commu., Vol. 45, no. 2, Feb. 1997.
[14]Feng Lo, FPGA Realization of the Viterbi Decoder for HDSL2 Systems, NCU thesis, June, 2000.
[15]Y.N. Chang, Hiroshi Suzuki, K. K. Parhi, “A 2-Mb/s 256-State 10-mW Rate-1/3 Viterbi Decoder,” IEEE Journal of Solid-State Circuits, vol. 35, no. 6, Jun. 2000.
[16]P. J. Black and T. H. Meng, “A 140-Mb/s, 32-state, radix-4 Viterbi de-coder,” IEEE Journal of Solid-State Circuits, vol. 27, pp. 1877—1885, Dec. 1992.
[17]E.H, Wold, “Pipelined and parallel-pipelined FFT processor for VLSI implementation,” IEEE Trans. on Computers, vol.c-33, no.5, pp.414-426, May, 1984.
[18]P.P. Sauve, S. Crozier, A. Hunt, “High-Speed DSP Implementations of Viterbi Decoders,” see Http://www.crc.ca/fec.
[19]M. D Ciletti, Modeling, Synthesis, and Rapid Prototyping with the Verilog HDL, Prentice-Hall Inc., New Jersey, 1999.
[20]Altera Digital Library, Altera Inc., Jan. 2000.