跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡譯緯
Yi-Wei Tsai
論文名稱: 相差空間調變的進階結果
Further Results on Differential Spatial Modulation
指導教授: 魏瑞益
Ruey-Yi Wei
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 47
中文關鍵詞: 相差空間調變區塊編碼調變編碼調變非同調相差編碼
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 相差空間調變是一種一次只使用一根天線傳送訊號的多天線技術,藉由選擇傳送天線可以多傳額外的資料位元,並避免前導(pilot)訊號的浪費。
    在本論文中,提出了三個相差空間調變的改良設計,一個是增加速率的相差空間調變,透過每兩個區塊間多傳一個資料位元的方式。另一個是增加多樣性的相差空間調變,在論文[4]中是使用重複符元的方式,在本篇論文我們提出了不同的方法來增加它的多樣性,通過適當的設計區塊碼和複數天線索引矩陣,可以實現我們所期望的傳送多樣性,和論文[4]的方法相比,我們的碼字有著更高傳輸速率。最後一種為將論文[32]籬柵編碼方法應用在傳送多樣性等於天線數量的相差空間調變,在傳送矩陣方面,分為一般的正交矩陣和超級正交矩陣,在傳輸速率相同的情況下,論文[32]的方法有著更好的錯誤效能。


    Differential spatial modulation (DSM) is a multi-antenna technique that uses only one antenna to transmit signals at a time and avoids pilot overhead. By selecting the transmitting antenna, additional data bits can be transmitted.
    In this paper, we propose three improved designs of DSM. One is increased-rate DSM by transmitting one additional data bit per two blocks. Another is increased-diversity DSM. To increase diversity, DSM using repeated symbols was proposed in [4]. In this paper, we propose a different approach to increase diversity of DSM. By properly designing block coded modulation and complex antenna-index matrices, the desired diversity order can be achieved. Compared with the existing schemes with the same diversity, our codes achieve higher transmission rates. The other is to apply the trellis-coded method to the full-diversity DSM. In terms of the transmission matrix, it is divided into a general orthogonal matrix and a super-orthogonal matrix. The method of [32] has better error performance when the transmission rate is the same.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VII 第一章 緒論 1 1.1 背景與研究動機 1 1.2 內容介紹 3 第二章 相關背景回顧 4 2.1 相差空間調變 4 2.2 論文[27]提出的低複雜度非同調最大可能性檢測器 7 2.3 籬柵編碼之相差空時調變 9 第三章 區塊編碼之相差空間調變 11 3.1 傳送多樣性為2的相差空間調變 11 3.2 傳送多樣性為3的相差空間調變 15 3.3 傳送多樣性為N_T的相差空間調變 18 第四章 增加速率的相差空間調變 19 方法1: 19 方法2: 19 第五章 籬柵編碼之相差空間調變 23 5.1 16個傳送矩陣的籬柵編碼之相差空間調變 23 5.1.1 集合分割 24 5.1.2 迴旋碼編碼器 25 5.1.3 籬柵圖 26 5.2 32個傳送矩陣的籬柵編碼之相差空間調變 28 5.2.1 集合分割 28 5.2.2 迴旋碼編碼器 30 5.2.3 籬柵圖 31 第六章 結論 33 參考文獻 34

    參考文獻
    [1] R. Mesleh, H. Haas, S. Sinanovic, C. Ahn, and S. Yun, “Spatial modulation,” IEEE Trans. Veh. Technol., vol. 57, no. 4, pp. 2228–2242, Jul. 2008.
    [2] J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “Spatial modulation: Optimal detection and performance analysis,” IEEE Commun. Lett., vol. 12,no. 8, pp. 545–547, Aug. 2008.
    [3] J. Jeganathan, A. Ghrayeb, L. Szczecinski, and A. Ceron, “Space shift keying modulation for MIMO channels,” IEEE Trans. Wireless Commun.,vol. 8, no. 7, pp. 3692–3703, Jul. 2009.
    [4] M. Renzo, H. Haas, and P. Grant, “Spatial modulation for multiple-antenna wireless systems: A survey,” IEEE Commun. Mag., vol. 49,no. 12, pp. 182–191, Dec. 2011.
    [5] S. Sugiura, S. Chen, and L. Hanzo, “A universal space-time architecture for multiple-antenna aided systems,” IEEE Commun. Surveys & Tutorials,vol. 14, no. 2, pp. 401–420, May 2012.
    [6] P. Yang, M. D. Renzo, Y. Xiao, S. Li and L. Hanzo, “Design guidelines for spatial modulation,” IEEE Commun. Surveys & Tutorials, vol. 17, no. 1, pp. 6-26, First Quarter 2015.
    [7] M. Shafi et al., “5G: A tutorial overview of standards, trials, challenges, deployment and practice,” IEEE J. Sel. Areas Commun., vol. 35, no. 6, pp. 1201-1220, Jun. 2017.
    [8] S. Sugiura, S. Chen, and L. Hanzo, “Coherent and differential spacetime shift keying: A dispersion matrix approach,” IEEE Trans. Commun.,vol. 58, no. 11, pp. 3219–3230, Nov. 2010.
    [9] S. Sugiura, S. Chen, H. Haas, P.M. Grant, and L. Hanzo, “Coherent versus non-coherent decode-and-forward relaying aided cooperative space-time shift keying,” IEEE Trans. Commun., vol. 59, no. 6, pp. 1707–1719, Jun. 2011.
    [10] S. Sugiura and L. Hanzo, “Effects of channel estimation on spatial modulation,” IEEE Signal Process. Lett., vol. 19, no. 12, pp. 805–808, Dec. 2012.
    [11] Y. Bian, X. Cheng, M. Wen, L. Yang, H. V. Poor, and B. Jiao, “Differential spatial modulation,” IEEE Trans. Veh. Technol., vol. 64, no. 7, pp. 3262–3268, Jul. 2015.
    [12] N. Ishikawa and S. Sugiura, “Unified differential spatial modulation,” IEEE Wireless Commun. Lett., vol. 3, no. 4, pp. 337–340, Aug. 2014.
    [13] W. Zhang, Q. Yin, and H. Deng, “Differential full diversity spatial modulation and its performance analysis with two transmit antennas,” IEEE Commun. Lett., vol. 19, no. 4, pp. 677–680, Apr. 2015.
    [14] P. A. Martin, “Differential spatial modulation for APSK in time-varying fading channels,” IEEE Commun. Lett., vol. 19, no. 7, pp. 1261–1264, Jul. 2015.
    [15] M. Wen, X. Cheng, Y. Bian, and H. V. Poor, “A low-complexity near-ML differential spatial modulation detector,” IEEE Signal Proc. Lett., vol. 22, no. 11, pp. 1834–1838, Nov. 2015.
    [16] J. Li, M. Wen, X. Cheng, Y. Yan, S. Song, and M. H. Lee, “Differential spatial modulation with Gray coded antenna activation order,” IEEE Commun. Lett., vol. 20, no. 6, pp. 1100–1103, Jun. 2016.
    [17] M. Zhang, M. Wen, X. Cheng, and L. Yang, “A dual-hop virtual MIMO architecture based on hybrid differential spatial modulation,” IEEE Trans.Wireless Commun., vol. 15, no. 9, pp. 6356–6370, Sep. 2016.
    [18] R. Rajashekar, N. Ishikawa, S. Sugiura, K. V. S. Hari, and L. Hanzo,“Full-diversity dispersion matrices from algebraic field extensions for differential spatial modulation,” IEEE Trans. Veh. Technol., vol. 66, no. 1, pp. 385–394, Jan. 2017.
    [19] J. Liu, L. Dan, P. Yang, L. Xiao, F. Yu, and Y. Xiao, “High-rate APSK-aided differential spatial modulation: Design method and performance analysis,” IEEE Commun. Lett., vol. 21, no. 1, pp. 168–171, Jan. 2017.
    [20] R. Rajashekar, C. Xu, N. Ishikawa, S. Sugiura, K. V. S. Hari, and L. Hanzo, “Algebraic differential spatial modulation is capable of approaching the performance of its coherent counterpart,” IEEE Wireless Commun. Lett., vol. 65, no. 10, pp. 4260–4272, Oct. 2017.
    [21] B. M. Hochwald and W. Swelden, “Differential unitary space-time modulation,” IEEE Trans. Commun., vol. 48, pp. 2041-2052, Dec. 2000.
    [22] V. Tarokh, N. Seshadri and A.R. Calderbank, “Space-time codes for high data rate wireless communication: Performance criterion and code construction,” IEEE Trans. Inform. Theory, vol. 44, pp. 744-765, Mar. 1998.
    [23] B. L. Hughes, “Differential space-time modulation,” IEEE Trans. Inform. Theory, vol. 46, pp. 2567-2578, no. 7, Nov. 2000.
    [24] L. Xiao, P. Yang, X. Lei, Y. Xiao, S. Fan, S. Li, and W. Xiang “A low complexity detection scheme for differential spatial modulation,” IEEE Commun. Lett., vol. 19, no. 9, pp. 1516-1519, Sep. 2015.
    [25] M. Wen, X. Cheng, Y. Bian, and H. V. Poor, “A low-complexity near-ML differential spatial modulation detector,” IEEE Signal Proc. Lett., vol. 22, no. 11, pp. 1834-1838, Nov. 2015.
    [26] Z Li, X. Cheng, S. Han, M. Wen, L. Yang, and B. Jiao, “A low complexity optimal sphere decoder for differential spatial modulation,”2015 IEEE Global Communications Conference (Globecom), San Diego, CA, 2015.
    [27] R. Y. Wei and T. Y. Lin, “Low-complexity differential spatial modulation,”IEEE Wireless Commun. Lett., vol. 8, no. 2, pp. 356-359, Apr. 2019.
    [28] V. Tarokh, N. Seshadri and A. R. Calderbank, “Space-time codes for high data rate wireless communication: Performance criterion and code construction,” IEEE Trans. Inform. Theory, vol. 44, pp. 744-765, Mar. 1998.
    [29] H. Imai and S. Hirakawa, “A new multilevel coding method using error correcting codes,” IEEE Trans. Inform. Theory, vol. 23, pp. 371-376, May. 1977.
    [30] S. Sayegh, “A class of optimum block codes in signal space,” IEEE Trans. Commun., vol. 30, pp. 1043-1045, Oct. 1986.
    [31] T. Kasami, T. Takata, T. Fujiwara and S. Lin, “On multilevel block modulation codes,” IEEE Trans. Inform. Theory, vol. 37, pp. 965-975, July 1991.
    [32] 許嘉瑀, “籬柵編碼之相差空時調變的碼搜尋,” 國立中央大學通訊工程研究所,碩士論文, 六月.2016
    [33] M. Tao and R. S. Cheng, “Trellis-coded differential unitary space-time modulation over flat fading channels,” IEEE Trans. Commun., pp. 587–596, Apr. 2003.
    [34] G.Ungerboeck, “Trellis-coded modulation with redundant signal sets-part I: introduction, “IEEE Commun. Mag., vol. 25, no. 2, pp. 5-11, Feb. 1987.
    [35] G.Ungerboeck, “Trellis-coded modulation with redundant signal sets-part II:state of the art, “IEEE Commun. Mag., vol. 25, no. 2, pp. 12-21, Feb. 1987.
    [36] N. Seshadri and H. Jafarkhani, “Super-orthogonal space-time trellis codes,” IEEE International Conf. on Commun. (ICCOZ), Apr. 2002.
    [37] R. Y. Wei and J. A. Ritcey, “Differential trellis coded modulation with state dependent mappings,” Asilomar Conference on Signals, Systems, and Computers, CA, USA, Nov. 2014.
    [38] 曾紹維, “差分空時籬柵碼,” 國立中央大學通訊工程研究所,碩士論文, 七月. 2014.

    QR CODE
    :::