跳到主要內容

簡易檢索 / 詳目顯示

研究生: 凌杰民
JIE-MIN LING
論文名稱: 不同渠床堆積形態下滲流引致土石流之歷程分析
指導教授: 周憲德
Hsien-Ter Chou
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 135
中文關鍵詞: 土石流顆粒流堆積體捲增效應滲流破壞
外文關鍵詞: entrainment effect
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究在實驗室內進行不同堆積型態之堆積體,因上游之滲流作用造成堆積體破壞,並轉化為顆粒流之渠道試驗。試驗過程中以高速攝影機進行影像攝影記錄其過程,再以影像分析處理,並探討顆粒堆積體內部因後方水體滲流作用下之破壞歷程、後方水深、顆粒流體運動特性、以及在不同型態之顆粒堆積體因侵蝕堆積床造成顆粒流之捲增效應。顆粒流因堆積型態與供水量、傾斜坡度條件之差異使顆粒流流動型態有所差異。顆粒流之波峰在固定底床條件下高度呈現遞減趨勢,而在堆積底床條件下,因顆粒堆積體在破壞過程中會侵蝕底床,而有捲增效應使土石流整體前鋒呈遞增之趨勢。


    In this study, the mobilization process of a deposited plie due to upstream seepage failure was experimentally investigated in a flume. The flow patterns of the granular flows depend on the channel slope, seepage discharge and the bed deposition. For a rigid bed, the surge height decays with distance. For a loose bed, the wet granular flow entrains particles of the bed during the mobilization process, and the surge height grows with distance due to the entrainment effect.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機及目的 2 1.3 研究方法 2 1.4 論文架構 3 第二章 文獻回顧 5 2.1 土石流定義及型態 5 2.1.1 土石流概述 5 2.1.2 土石流特性界定 5 2.2 土石流發生之影響因子 6 2.2.1 豐富的土石材料 6 2.2.2 臨界坡度 7 2.2.3 臨界流量 9 2.3 土石壩的破壞類型 11 2.4 土石流捲增效應影響因子 13 2.4.1 捲增效應概述 13 2.4.2 衝擊過程機制 13 2.4.3 崩塌角度與崩塌體體積之影響 16 2.4.4 底床顆粒粗糙度之影響 16 2.4.5 底床顆粒厚度之影響 18 第三章 顆粒堆積潰決實驗 19 3.1 實驗設備 19 3.2 顆粒特性 25 3.3 實驗步驟 27 3.4 分析方法 30 3.4.1 顆粒堆積體潰決與流況分析 30 3.4.2 顆粒流高度歷程分析 30 第四章 實驗結果與討論 35 4.1 顆粒堆積體之滲透性 35 4.2 坡度與流量影響顆粒流之型態 40 4.3 顆粒堆積體潰決型態 44 4.3.1 三角形堆積體 44 4.3.2 三角形堆積體與堆積底床 46 4.3.3 堆積底床 47 4.4 流量與堆積水深關係 49 4.4.1 三角形堆積體堆積水深 49 4.4.2 三角形堆積體與堆積底床之上游水深歷程 52 4.4.3 均勻堆積底床堆積水深 55 4.5 顆粒流斷面高度變化歷程 58 4.5.1 三角形堆積體各斷面高度歷程 58 4.5.2 三角形堆積體與堆積底床各斷面高度歷程 63 4.5.3 堆積底床各斷面高度歷程 68 4.6 顆粒流流動特性 73 4.6.1 三角形堆積體之特徵位置歷程 73 4.6.2 三角形堆積體與堆積底床之特徵位置歷程 77 4.6.3 堆積底床之特徵位置歷程 81 4.7 堆積顆粒體流體化之參數分析 84 4.7.1 三角形堆積體型態流量及坡度對波峰高度影響 84 4.7.2 三角形與堆積底床型態流量及坡度對波峰高度影響 86 4.7.3 堆積底床型態流量及坡度對波峰高度影響 88 4.8 顆粒流之速度 90 4.8.1 三角形堆積體型態之流速 90 4.8.2 三角形堆積體與堆積底床型態之流速 93 4.8.3 堆積底床型態之流速 96 4.9 檔板堆積效應 99 4.10 捲增效應及流體化 101 第五章 結論與建議 109 5.1 結論 109 5.2 建議 110 參考文獻 111

    [1] 涂秉杰 (2015),“潰壩流撞擊直立平板之流況分析”,國立中央大學木工 程學系研究所,碩士論文。
    [2] 林聖景 (2017),“渠床堆積顆粒體之滲流破壞過程及撞擊力分析”,國立中央大學木工程學系研究所,碩士論文。。
    [3] 高橋保、匡尚富 (1988),「天然ダムの決壊による土石流の規模に関する研究」,京都大學防災研究所年報,第31 號,B-2,1988。
    [4] 黃子益 (2016),“滲流引致渠床顆粒堆積之潰散過程分析”,國立中央大學木工程學系研究所,碩士論文。
    [5] 謝正倫(1991),土石流預警系統之研究, 國立成功大學台南水工試驗所研究試驗報告, 130 號。
    [6] 張立憲 (1985),“土石流特性之探討”,中華水土保持學報,第16 卷,第1 期,第135-141 頁。
    [7] 詹錢登 (1997),“土石流理論教材大綱”,行政院教育部顧問室,編號86-土木-教材-C011。
    [8] 詹錢登 (2004),「土石流概論」, 科技圖書股份有限公司,台北。
    [9] 周憲德、李璟芳,黃郅軒,張友龍 (2013),「火炎山礫石型土石流之監測與流動特性分析」,中華民國水土保持學報,第44 卷,第2 期,頁144-157。
    [10] 水土保持學會 (2005),“水土保持手冊”,中華水土保持學會。
    [11] 山口伊佐夫 (1985),“防砂工程學”,國立台灣大學森林學系譯,台北,第150-174 頁。
    [12] 游繁結、賴建信 (1996),“不同粒徑組成之土石流流動特性研究”,中華水土保持學報,第27 卷,第3 期,第213-222 頁。
    [13] Barbolini M., A. Biancardi, F. Cappabianca, L. Natale, M. Pagliardi (2005), “ Laboratorystudy of erosion processes in snow avalanches”, Cold Reg Sci Technol,43, pp. 1–9.
    [14] Cui P. (1999), “Impact of debris flow on river channel in the upper reaches of the Yangtze River”, International Journal of Sediment Research,14(2):, pp. 201–203.
    [15] Dufresne A. (2012), “Granular flow experiments on the interaction with stationary runout path materials and comparison to rock avalanche events”, Institute of Geological Sciences, Geology, Albert-Ludwigs-Universität, Freiburg, Germany.
    [16] Gauer P., D. Issler (2004), “Possible erosion mechanisms in snow avalanche”, Ann Glaciol,38, pp. 384–392.
    [17] Gregoretti C. (2000), “The initiation of debris flow at high slopes: experimental results”, Journal of Hydraulic Research, 38, pp. 83–88.
    [18] Hungr O., SG. Evans (2004), “Entrainment of debris in rock avalanches: an analysis of a long run-out mechanism”, Geological Society of America Bulletin ,116(9/10), pp. 1240–1252.
    [19] Hungr O., S. McDougall, MJ. Bovis (2005), “Entrainment of material by debris flows”, In: Jakob M, Hungr O (eds) Debris-flow hazards and related phenomena.Springer, Berlin, pp. 135–158.
    [20] Legros F. (2002), “The mobility of long-runout landslides, Eng. Geol.”, 63, pp. 301– 331.
    [21] Lu P.Y., X.G. Yang, F.G Xu, T.X Hou and J.W Zhou (2016), “An analysis of the entrainment effect of dry debris avalanches on loose bed materials”, Springer. doi:10.1186/s40064-016-3272-4.
    [22] Mangeney A., L. S. Tsimring, D. Volfson, I. S. Aranson, and F. Bouchut (2007), “Avalanche mobility induced by the presence of an erodible bed and associated entrainment”, Geophysical Research Letters, VOL. 34, L22401, doi:10.1029/2007GL031348.
    [23] Mangeney A., O. Roche, O. Hungr, N. Mangold, G. Faccanoni, A. Lucas1 (2010), “ Erosion and mobility in granular collapse over sloping beds”, Journal of Geophysical Research, VOL. 115, F03040, doi:10.1029/2009JF001462.
    [24] McDougall S., O. Hungr (2005), “Dynamic modelling of entrainment in rapid landslides.”,Can Geotech J,42, pp. 1437–1448.
    [25] Sovilla B., P. Burlando, P. Bartelt (2006), “Field experiments and numerical modeling of mass entrainment in snow avalanches”, Journal of Geophysical Research. doi:10.1029/2005JF000391.
    [26] Takahashi T. (1978), “Mechanical characteristics of debris flow”, J.Hydraulics Div., ASCE, Vol. 104, No. 8, pp. 1153-1169.
    [27] Tognacca C., G.R. Bezzola, H.E. Minor (2000), “Threshold criterion for debris flow initiation due to channel bed failure”, Proceedings of the Second International Conference on Debris Flow Hazards Mitigation Taipei, pp. 89–97.

    QR CODE
    :::