跳到主要內容

簡易檢索 / 詳目顯示

研究生: 何懋騰
Mao-Teng Ho
論文名稱: 具有光子循環之角度多工白光雷射照明之研究
Study of Phosphor-Converted White Light Laser Lighting with Multi-Angle and Photon-Recycling Mechanism
指導教授: 孫慶成
Ching-Cherng Sun
楊宗勳
Tsung-Hsun Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 100
中文關鍵詞: 雷射二極體光子循環角度多工空間色偏
外文關鍵詞: Laser diode Multi-angle,, Photon-recycling, Multi-angle, Angular correlated color temperature deviations
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中我們使用藍光雷射二極體激發黃色螢光粉產生白光雷射照明,並提升白光雷射照明之效率與其輸出能量。首先遵循於由孫慶成教授之固態照明團隊所建立之準確螢光粉光學模型流程,針對藍光雷射二極體應用於螢光粉之特性分析。再者,設計半球反射杯之光子循環機制透過光子回收方法,使整體白光雷射照明效率提升,並使用建立完成之螢光粉模型,進行模擬與實驗結果之佐證。最後,使用角度多工方式將三支雷射光同時輸入系統架構之中,並且分析在控制系統光展量時,能以線性疊加之方式輸出能量,再搭配使用之散射架構方式解決整體白光雷射照明之空間色偏均勻度。


    In this thesis, we utilize blue laser diodes as light sources to excite yellow phosphor and enhance output power and efficiency for phosphor-converted white light laser lighting. We started from following the phosphor optical model developed in the laboratory led by Dr. Ching-Cherng Sun to analyze the optical characteristic of yellow phosphor applied on blue laser diode. Second, we designed a hemisphere reflector to perform photon-recycling to increase the optical efficiency of the system setup. In addition, the experimental measurement was compared with the simulation with the phosphor model. Finally, we designed angle-multiplexed laser injection to linearly increase the output flux with holding the étendue of whole system. Finally, we reduced the angular correlated color temperature deviations of the laser light source module with use of various diffusers.

    摘要 I Abstract II 致謝 III 目錄 VII 圖目錄 X 表目錄 XV 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機與目的 4 1-3 論文大綱 7 第二章 工作原理 9 2-1 雷射二極體原理 9 2-2 螢光粉發光原理 11 2-3 相關色溫 13 第三章 以藍光雷射二極體光源之螢光粉光學模型 15 3-1 螢光粉散射模型 15 3-2 螢光粉等效吸收係數與等效轉換係數 20 3-2-1 雙積分球量測系統之校正 20 3-2-2 螢光粉等效吸收係數 25 3-2-3 螢光粉等效轉換效率 31 3-3 各螢光粉濃度光學模型驗證 31 第四章 具光子循環機制之角度多工白光雷射照明分析 35 4-1 白光雷射照明 35 4-1-1 白光雷射照明架構 35 4-1-2 白光雷射照明分析 36 4-2 光子循環機制之分析 41 4-2-1 光子循環機制之設計 41 4-2-2 光子循環機制之能量影響 43 4-2-3 基板反射與光萃取之分析 52 4-2-4 搭配光子循環之空間色偏分析 55 4-3 角度多工白光雷射照明之分析 64 4-3-1 角度多工架構與分析 64 4-3-2 角度多工之空間色偏分析 68 第五章 結論 70 參考文獻 72 中英文名詞對照表 76

    [1] S. Nakamura, T. Mukai, and M. Senoh, “Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes,” Appl. Phys. Lett. 64, 1687 (1994).
    [2] R. Haitz and J. Y. Tsao, “Solid-state lighting: ‘The case’ 10 years after and future prospects,” Phys. Status Solidi A 208, 17–29 (2011).
    [3] E. F. Schubert, Light-Emitting Diodes (Cambridge University Press,2006).
    [4] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925 (1999).
    [5] A. A. Setlur, A. M. Srivastava, H. A. Comanzo, and D. D. Doxsee, “Phosphor blends for generating white light from near-UV/blue light-emitting devices,” United States Patent, US 6685852 B2 (2004).
    [6] H. Wu, X. Zhang, C. Guo, J. Xu, M. Wu, and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with Green/red phosphors,” IEEE Photon. Technol. Lett. 17, 1160-1162 (2005).
    [7] Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91, 141101 (2007).
    [8] LEDinside, http://www.ledinside.com.tw/node/9288/.
    [9] Cree,http://www.cree.com/News-and-Events/Cree-News/Press-Releases/2014/March/ 300LPW-LED-barrier.
    [10] N. Kimura, K. Sakuma, S. Hirafune, K. Asano, and N. Hirosaki, “Extrahigh color rendering white light-emitting diode lamps using oxynitride and nitride phosphors excited by blue light-emitting diode,” Appl. Phys. Lett. 90, 051109 (2007).
    [11] M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” J. Display Technol. 3, 160-175 (2007).
    [12] M. H. Crawford, “LEDs for Solid-State Lighting: Performance Challenges and Recent Advances," in IEEE J. Sel. Top. in Quantum 15, 1028-1040 (2009).
    [13] J. Piprek, “Efficiency droop in nitride-based light-emitting diodes,” Phys. Status Solidi A 207, 2217–2225 (2010).
    [14] J. Cho, E. F. Schubert, and J. K. Kim, “Efficiency droop in light-emitting diodes: Challenges and countermeasures,” Laser Photon. Rev. 6, 408–421 (2013).
    [15] T. Mukai, S. Nagahama, T. Kozaki, M. Sano, D. Morita, T. Yanamoto, M. Yamamoto, K. Akashi, and S. Masui, “Current status and future prospects of GaN-based LEDs and LDs,” Phys. Status Solidi A 201, 2712–2716 (2004).
    [16] J. J. Wierer, Jr., J. Y. Tsao, and D. S. Sizov, “Comparison between blue lasers and light-emitting diodes for future solid-state lighting,” Laser Photonics Rev. 7, 963–993 (2013).
    [17] N. Holonyak and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As1-xPx) junctions,” Appl. Phys. Lett. 1, 82–83(1962).
    [18] H. Manchester, “Light of Hope or Terror?,” Readers Digest, 97–100 (1963).
    [19] A. Neumann, J. J. Wierer, W. Davis, Y. Ohno, S. R. J. Brueck, and J.Y. Tsao, “Four-color laser white illuminant demonstrating high color-rendering quality,” Opt. Express 19, A982-A990 (2011)
    [20] H. Y. Ryu and D. H. Kim, “High-brightness Phosphor-conversion White Light Source Using InGaN Blue Laser Diode,” J. Opt. Soc. Korea 14, 415-419 (2010).\
    [21] K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Advances 3, 072107 (2013).
    [22] G. Ledru, C. Catalano, P. Dupuis, and G. Zissis, “Efficiency and stability of a phosphor-conversion white light source using a blue laser diode,” AIP ADVANCES 4, 107134 (2014)
    [23] Y. Xu, L. Chen, Y. Li, G. Song and Y. Wang, “Phosphor-conversion white light using InGaN ultraviolet laser diode,” Appl. Phys. Lett. 92, 021129-021129-3 (2008).
    [24] T. Farooq and K. Qian, “High luminance low étendue white light source using blue laser over static phosphor,” SPIE 9671, AOPC 2015: Advances in Laser Technology and Applications (2015).
    [25] N. Abu-Ageel and D. Aslam, “Laser-Driven Visible Solid-State Light Source for Etendue -Limited Applications,” J. Display Technol. 10, 700-703 (2014).
    [26] T. Reiners, “Headlight module,” United States Patent, US 9702519 B2 (2017).
    [27] O. Svelto, Principle of Lasers 5th edition (Springer, New York, 1989).
    [28] S. O. Kasap, Optoelectronic And Photonics – Principles and Practices (Prentice Hall, 2001).
    [29] S. Shionoya, W. M. Yen, and T. Hase, Phosphor Handbook (CRC Press, BocaRaton, 1999).
    [30] 劉如熹、劉宇桓,發光二極體用氧氮螢光粉介紹,全華圖書股份有限公司,台北市,中華民國九十五年。
    [31] James M. Palmer and Barbara G. Grant, The Art of Radiometry (SPIE Press, Washington, 2010).
    [32] International Commission on Illumination, CIE15: Technical Report: Colorimetry, 3rd ed. (CIE, Vienna, 2004).
    [33] K. L. Kelly, “Lines of Constant Correlated Color Temperature Based on MacAdam’s (u,υ) Uniform Chromaticity Transformation of the CIE Diagram,” J. Opt. Soc. Am. 53, 999-1002 (1963)
    [34] 何信穎,白光 LED 之 YAG 螢光粉光學模型之研究,國立中央大學光電科學研究所碩士論文,中華民國九十六年。
    [35] 紀葦世,高效能YAG 螢光粉之特性量測與模型,元智大學光電工程研究所碩士論文,中華民國九十九年。
    [36] 陳靜儀,矽酸鹽螢光粉用於白光 LED 之光學模型,國立中央大學光電科學研究所碩士論文,中華民國九十七年。
    [37] 張容瑄,綠橘雙色矽酸鹽螢光粉光學模型之建立與分析,國立中央大學光電科學研究所碩士論文,中華民國九十九年。
    [38] 張育譽,雙螢光粉光學模型之研究其演色性之評估,國立中央大學光電科學研究所博士論文,中華民國一百零四年。
    [39] C. C. Sun, C. Y. Chen, H. Y. He, C. C. Chen, W. T. Chien, T. X. Lee, and T.H. Yang, “Precise optical modeling for silicate-based white LEDs,” Opt. Express 16, 20060-20066 (2008).
    [40] C. C. Sun, C. Y. Chen, J. H. Chang, T. H. Yang, W. S. Ji, Y. S. Jeng, and H. M. Wu, “Linear calculation model for prediction of color rendering index performance associated with correlated color temperature of white light emitting diodes with two phosphors,” Opt. Eng. 51, 054003 (2012).
    [41] T. H. Yang, C. Y. Chen, Y. Y. Chang, B. Glorieux, Y. N. Peng, H. X. Chen, T. Y. Chung, T. X. Lee, and C. C. Sun, “Precise simulation of spectrum for green emitting phosphors pumped by a blue LED die,” IEEE Photon. J. 6, 8400510 (2014).
    [42] S. J. Lee, “Analysis of light-emitting diodes by Monte Carlo photon simulation,” Appl. Opt. 40, 1427-1437 (2001).
    [43] Z. Y. Ting and C. McGill, “Monte Carlo simulation of light-emitting diode light-extraction characteristics,” Opt. Eng. 34, 3545-3553 (1995).
    [44] Breault Research Organization, Inc., http://www.breault.com/.
    [45] 弘大貿易股份有限公司, http://hung-ta-co.com/web2013/tw/index.aspx.
    [46] N. T. Tran, J. P. You, and F. G. Shi, “Effect of phosphor particle size on luminous efficacy of phosphor-converted white LED,” J. Lightwave Techno. 27, 5145-5150 (2009).
    [47] Y. Shuai, N. T. Tran, and F. G. Shi, “Nonmonotonic phosphor size dependence of luminous efficacy for typical white LED emitters,” IEEE Photon. Techno Lett. 23, 552-554 (2011).
    [48] Nichia, Inc., http://www.nichia.co.jp/en/product/laser.html.
    [49] K. Dowling and M. Grather, Approved method: Electrical and Photometric Measurements of Solid-State Lighting Product (Illuminating Engineering Society, New York, 2008).
    [50] R. Hua, X. Luo, H. Fenga, and S. Liu, “Effect of phosphor settling on the optical performance of phosphor-converted white light-emitting diode,” J.Lumines. 132, 1252-1256 (2012).
    [51] J. D. Ingle and S. R. Crouch, Spectrochemical Analysis (Prentice Hall, New Jersey, 1988).
    [52] V. N. Mahajan, Fundamentals of Geometrical Optics (SPIE Press, Washington, 2014).
    [53] Bayer, https://www.bayer.com/.

    QR CODE
    :::