跳到主要內容

簡易檢索 / 詳目顯示

研究生: 簡辰芳
Chen-fang Chien
論文名稱: 具苯環、氰基及羧酸官能基之中孔洞材料 SBA-1 的合成與鑑定
Synthesis and Characterization of CubicMesoporous Silicas SBA-1 with Benzene, Cyanide and Carboxylic Acid Functionalities
指導教授: 高憲明
Hsien-ming Kao
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 99
語文別: 中文
論文頁數: 124
中文關鍵詞: 羧酸官能基氰基苯環中孔洞材料
外文關鍵詞: mesoporous, benzene, cyanide, carboxylic acid functionalities
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要是合成具有雙官能基之 SBA-1 中孔洞材料,共分為兩個部分,第一部分是利用 界面活性劑 Cetyltriethylammonium bromide (CTEABr) 作為模板試劑,1,4-bis (trithoxysilyl)-benzene (BTEB) 與 3-(Triethoxysilyl)-Propionitrile (CNTES) 為共同矽源,在 HCl/CTEABr = 140 下,合成出具有苯環和氰基官能基之中孔洞材料 SBA-1,之後再利用乙醇和少量鹽酸移除界面活性劑 CTEABr,樣品中 CNTES 含量可達 50%,仍具有良好的結構規則度。接著也是利用CTEABr 作為模板試劑,1,4-bis (trithoxysilyl)-benzene (BTEB) 與 3-(Triethoxysilyl)-Propionitrile (CNTES) 為共同矽源,在 HCl/CTEABr = 230 下,合成中孔洞材料 SBA-1,當反應中酸量提高時,有部分氰基官能基會被氧化成羧酸官能基,使得此中孔洞材料為含有苯環、氰基和羧酸官能基,而樣品中 CNTES 含量可達 50%。
    第二部分則是將第一部分所合成出的 SBA-1 中孔洞材料利用 48% H2SO4 反應一天後將樣品中所有的氰基官能基氧化成羧酸官能基。
    以上兩部分的實驗都會利用 X-ray 粉末繞射、固態核磁共振光譜、熱重分析儀、FT-IR 紅外線光譜及等溫氮氣吸脫附等儀器鑑定材料的特性,以了解在相同矽源下,增加反應中的酸量對 SBA-1 材料所造成的影響。


    The thesis is divided into two parts, both studied on bifunctional periodic mesoporous organosilicas (BPMOs). In part one, the BPMOs containing both benzene functional moieties in the frame work and terminal cyanide groups protruding into the channel pores haved been synthesized with CTEABr as the structure-directing agent under acidic conditions (CTEABr/HCl = 140) via co-condensation of 1,4-bis (trithoxysilyl)-benzene (BTEB) and 3-(Triethoxysilyl)-Propionitrile (CNTES). A high degree of structural ordering is still retained up to 50 mol% CNTES loading (based on silicon) in the synthesis mixture.Then, well-ordered cubic mesoporous silica SBA-1 functionalized with cyanide and carboxylic acid functional groups have been synthesized via co-condensation of 1,4-bis(triethoxysilyl)benzene (BTEB) and 3-(Triethoxysilyl)-Propionitrile (CNTES) templated by CTEABr under acidic condition (CTEABr/HCl = 230). A high degree of structural ordering is still retained up to 50 mol% CNTES loading (based on silicon) in the synthesis mixture.
    In part two, the BPMOs, which have been synthesized, hydrolyzed all the cyanide groups to carboxylic acid group by refluxing with 48% sulfuric acid at 343 K for 24 h.
    In the thesis, the materials thus obtained were characterized by a variety of techniques including X-ray diffraction (XRD), solid state 13C CP/MAS NMR, thermogravimetric analysis (TGA), FT-IR and nitrogen sorption measurements.

    中文摘要 I Abstract II 謝誌 V 目錄 VI 圖目錄 VIII 表目錄 X 第一章 序論 1 1-1 孔洞分子篩分類 1 1-2-1中孔洞分子篩MCM系列簡介 1 1-2-2 中孔洞分子篩 SBA 系列簡介 4 1-3 中孔洞分子篩的合成機制 8 1-4 界面活性劑性質簡介 10 1-4-1 分子結構 10 1-4-2 微胞形成 11 1-4-3 界面活性劑分子的排列 12 1-4-4 界面活性劑的種類 14 1-5 中孔洞分子篩的應用 18 1-6 文獻回顧 21 1-6-1 含有氰基官能基之中孔洞材料 21 1-6-2 含有苯環官能基之中孔洞材料 24 第二章 實驗部分 27 2-1 實驗藥品 27 2-2 實驗步驟 29 2-2-1 合成陽離子型界面活性劑 29 2-2-3 將 CN group 氧化為 COOH 官能基 30 2-2-4 溶劑萃取法移除孔洞中的模板 30 2-2-5 B-CN-230-X-70-O-as 中孔洞材料的酸鹼滴定測試 31 2-3 實驗設備 32 2-3-1 實驗合成設備 32 2-3-2 實驗鑑定儀器 32 2-4 鑑定儀器 34 2-4-1 X-ray粉末繞射 (Powder X-Ray Diffractometer) 34 2-4-2 氮氣吸脫附等溫曲線、表面積與孔洞特性鑑定 37 2-4-3 傅立葉紅外線吸收光譜 (FT-IR) 41 2-4-4熱重分析 (Thermo Gravimetric Analyzer; TGA) 42 2-4-5 固態核磁共振 (Solid State NMR) 43 2-4-5.1 魔角旋轉 (Magic Angle Spinning,MAS) 46 2-4-5.2 交叉極化 (Cross Polarization,CP) 46 2-4-5.3 去偶合 (decoupling) 47 2-4-6 掃描式電子顯微鏡 (Scanning Electron Microscopy) 48 第三章 結果與討論 51 3-1 B-CN-140-X-SBA-1 的合成 51 3-1-1 XRD 51 3-1-2 氮氣等溫吸脫附鑑定 54 3-1-3 13C CP/MAS NMR 58 3-1-4 熱重分析 61 3-1-5 FT-IR 紅外線光譜 71 3-1-6 SEM 影像 73 3-2 B-CN-230-X-SBA-1 的合成 75 3-2-1 XRD 75 3-2-2 氮氣等溫吸脫附鑑定 78 3-2-3 13C CP/MAS NMR 83 3-2-4 13C-{1H} MAS NMR鑑定 85 3-2-5 熱重分析 87 3-2-6 FT-IR 紅外線光譜 97 3-2-7 SEM 影像 99 3-3 B-CN-230-X-SBA-1 的氧化反應 101 3-3-1 XRD 101 3-3-2 13C CP/MAS NMR 104 3-3-3 FT-IR 紅外線光譜 106 3-3-4 SEM 影像 109 3-3-5 酸鹼滴定 111 第四章 結論 113 參考文獻 114

    1. IUPAC Manual of Symbols and Terminology, Appendix 2, Part 1, Colloid and Surface Chemistry, Pure Appl. Chem., 1972, 31, 57-638.
    2. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beak, J.S. Nature, 1992, 359, 710-712.
    3. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonwicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T-W.; Olson, D. H.; Sheppard, E. W.; Higgins, S. B.; Schlenker, J. L. J. Am. Chem. Soc., 1992, 114, 10834-10843.
    4. B. Munoz, A. Ramila, J. Perez-Pariente, I. Diaz, M. Vallet-Regi. Chem. Mater., 2003, 15, 500-503.
    5. Yanagisawa, T.; Shimizu, T.; Kuroda, K.; Kato, C. Bull. Chem. Soc. Jpn., 1990, 63, 988-992.
    6. Sayari, A. Chem. Mater., 1996, 8, 1840-1852.
    7. Harthmann, M.; Popll, A.; Kenvan, L. J. Phys. Chem., 1996, 100, 9906-9910.
    8. Hamza, A.; Srinivas, D. Catal. Lett., 2009, 128, 434-442.
    9. Kulkarni, S. J.; Rohitha, C. N.; Narender, N. J. Porous. Mater., 2010, 17, 321-328.
    10. Park, Y. K.; Choi, S. B.; Nam, H. J.; Jung, D. Y.; Ahn, H. C.; Choi, K.; Furukawa, h.; Kim, J. Chem. Commun., 2010, 46, 3086-3088
    11. (a) Wu, C.-G.; Bein, T. Science, 1994, 264, 1757-1759. (b) Wu, C.-G.; Bein, T. Science, 1994, 266, 1013-1015. (c) Wu, C.-G.; Bein, T. Chem. Mater., 1994, 6, 1109-1112.
    12. Wang, A.; Shi, Z. X.; Zhang, J.; Wang, L. J. Compos. Mater., 2008, 42, 1151-1157.
    13. Ward, E. P. W.; Arslan, I. ; Bleloch, A.; Thomas, J. M.; Midgley, P. A. Journal of Physics : Conference Series, 2006, 26, 207-210.
    14. Lee, Y. S.; Surjadi, D.; Rathman, J. F. Langmuir, 1996, 12, 6202-6210.
    15. Dai, Z.; Lu, G.; Bao, J.; Huang, X.; Ju, H. Electroanalysis, 2007, 19, 604-607.
    16. Radu, D. R.; Lai, C. Y.; Jeftinija, K.; Rowe, E. W.; Jeftinija, S.; Lin, V. S.-Y. J. Am. Chem. Soc., 2004, 126, 13216-13217.
    17. Zhao, Y.; Trewyn, B. G.; Slowing, I. I.; Lin, V. S.-Y. J. Am. Chem. Soc., 2009, 131, 8398-8400.
    18. Hartmann, M.; Jung, D. J. Mater. Chem., 2010, 20, 844-857.
    19. Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schuth, F.; Stucky, G. D. Nature, 1994, 368, 317-321.
    20. Huo, Q.; Margolese, D. I.; Ciesla, U.; Demuth, D. G.; Feng, P.; Gier, T. E.; Sieger, P.; Firouzi, A.; Chmelka, B. F.; Schuth, F.; Stucky, G. D. Chem. Mater., 1994, 6, 1176-1191.
    21. Kim, M. J.; Ryoo, R. Chem. Mater., 1999, 11, 487-491.
    22. Sakamoto, Y.; Kaneda, M.; Terasaki, O.; Zhao, D. Y.; Kim, J. M.; Stucky, G.; Shim, H. J.; Ryoo, R. Nature, 2000, 408, 449-453.
    23. (a) Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.;Chmelka, B. F.; Stucky, G.D. Science. 1998, 279, 548-552.
    (b) Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc. 1998, 120, 6024-6036.
    24. Pluronic poly(alkene oxide) triblock copolymers are trademarked products of BASF, Mt. Olive, NJ.
    25. (a) Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schüth, F.; Stucky, G. D. Nature 1994, 368, 317-321.
    (b) Chen, C.; Li, H.; Davis, M. E. Microporous Mater. 1993, 2, 17-26.
    (c) Attard, G. S.; Glyde, J. C. Nature. 1995, 378, 366-368.
    (d) Göltner, C. G.; Antonietti, M. Adv. Mater. 1997, 9, 431-436.
    26. (a) Tanev, P. T.; Pinnavaia, T. J. Science. 1995, 267, 865-867.
    (b) Bagshaw, S. A.; Prouzet, E.; Pinnavaia. T. J. Science. 1995, 269, 1242-1244.
    27. (a) Prouzet, E.; Pinnavaia. T. J. Angew. Chem. Int. Ed.; 1997, 36, 516-518.
    (b) Antonietti, M.; Göltner, C. G. Angew. Chem. Int. Ed.; 1997, 36, 910-928.
    (c) Firouzi, A.; Atef, F.; Oertli, A. G.; Stucky, G. D.; Chmelka, B. F. J. Am. Chem. Soc. 1997, 119, 3596-3610.
    28. (a) Imperor-Clerc, M.; Davidson, P.; Davidson, A. J. Am. Chem. Soc. 2000, 122, 11925-11933.
    (b) Kruk, M.; Jaroniec, M.; Ko, C. H.; Ryoo, R. Chem. Mater. 2000, 12, 1961-1968.
    (c) Ryoo, R.; Ko, C. H.; Kruk, M.; Antochshuk, V.; Jaroniec, M. J. Phys. Chem. B. 2000, 104, 11465-11471.
    (d) Ravikovitch, P. I.; Neimark, A. V. J. Phys. Chem. B. 2001, 105, 6817-6823.
    29. Piotr, K.; Claudia, W.; Stefan, K. Chem. Mater. 1994, 16, 2869-2880.
    30. Schubert, U.; Husing, N. Synthesis of inorganic materials, chapter 4 , Wiley-Interscience publications: New York, 2000.
    31. Israelachvili, J. N. Colloids Surf: A: Physiocochem. Eng. Aspects 1993, 1, 91-112.
    32. Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W. Biochim. Biophys. Acta. 1977, 470, 185-201.
    33. Sakamoto, Y.; Kaneda, M.; Terasaki, O.; Zhao, D. Y.; Kim, J. M.; Stucky, G.; Shin, H. J.; Ryoo, R. Nature 2000, 408, 449-453.
    34. Evans, F. D.; Wennerstrom, H. “The Colloidal Domain”, 2nd Ed, VHC, New York, 1999.
    35. Qi, L.; Ma, J.; Cheng, H.; Zhao, Z. “Colloids and Surfaces A”, 1996, 111, 195-202.
    36. (a) Schierbaum, K. D.; Weiss, T.; Velzen, E. U. T. van; Engbersen, J. F. J.; Reinhoudt, D. N.; Gopel, W. Science., 1994, 265, 1413-1415.
    (b) Sayari, A. Chem. Mater., 1996, 8, 1840-1852.
    (c) Feng, X.; Fryxell, G. E.; Wang, L.-Q; Kim. A. Y.; Liu, J.; Kemner, K. M. Science, 1997, 276, 923-926.
    37. Tsai, C. T.; Pan, Y. C.; Ting, C. C.; Vetrivel, S.; Chiang, A. S. T.; Fey, G. T. K.; Kao, H. M. Chem. Commun., 2009, 5018-5020.
    38. (a) Tanglumlert, W.; Imae, Y.; White, T. J.; Wongkasemjit, S. Cata. Commun., 2009, 10, 1070-1073.
    (b) Wongkasemjit, S.; Tamuang, S.; Tanglumlert, W.; Imae, T. Mater. Chem. Phys., 2009, 117, 301-306.
    (c) Szczodrowski, K.; Prélot, B.; Lantenois, S.; Douillard, J. M.; Zajac, J. Micro Meso Mater., 2009, 124, 84-93.
    39. Pan, Y. C.; Wu, H. Y.; Lee, L. P.; Jheng, G. L.; Fey, G. T. K.; Kao, H. M. Microporous Mesoporous Mater., 2009, 123, 78-90.
    40. (a) Liu, J. Feng, X.; Fryxell, G. E.; Wang, L.-Q.; Kim. A. Y.; Gong, M. L. Adv. Meter. 1998, 10, 161-165.
    (b) Brunel, D. Micro Meso Mater. 1999, 27, 329-344.
    (c) Impens, N. R. E. N.; Van der Voort, P.; Vansant, E. F. Micro Meso Mater. 1999, 28, 217-232.
    (d) Walcarius, A.; Etienne, M.; Lebeau, B. Chem. Mater. 2003, 15, 2161-2173.
    41. Stein, A.; Melde, B. J.; Schroden, R. C. Adv. Meter. 2000, 12, 1403-1419.
    42. (a) Steel, A.; Carr, S. W.; Anderson, M. W. Chem. Mater. 1995, 7, 1829-1832.
    (b) Lim, M. H.; Stein, A. Chem. Mater. 1999, 11, 3285-3295.
    43. Kim, M. H.; Blanford, C. F.; Stein, A. Chem. Mater. 1998, 10, 467-470.
    44. (a) Mercier, L.; Pinnavaia, T. J. Chem. Mater. 2000, 12, 188-196
    (b) Kruk, M.; Asefa, T.; Coombs, N.; Jaroniec, M.; Qzin, G. A. J. Mater. Chem. 2002, 12, 3452-3457.
    45. (a) Hall, S. R.; Fowler, C. E.; Lebeau, B.; Mann, S. Chem. Commun. 1999, 201-202.
    (b) Kao, H. M.; Liao, C. H.; Hung, T. T.; Pan, Y. C.; Chiang, A. S. T. Chem. Mater. 2008, 20, 2412-2422.
    46. Wu, H. Y.; Chen, C. T.; Hung, I. M.; Liao, C. H.; Vetrivel, S.; Kao, H. M. J. Phys. Chem. C 2010, 114, 7021-7029.
    47. (a) Mori, Y.; Pinnavaia, T. J. Chem. Mater. 2001, 13, 2173-2178.
    (b) Kao, H. M.; Shen, T. Y.; Wu, J. D.; Lee, L. P. Micro Meso Mater. 2008, 110, 461-471.
    (c) Kao, H. M.; Lee, L. P.; Palani, A. Anal. Chem. 2008, 80, 3016-3019.
    (d) Kao, H. M.; Chiu, P. J.; Jheng, G. L.; Kao, C. C.; Tsai, C. T.; Yau, S. L.; Tsai, H. H. G.; Chou, Y. K. New J. Chem. 2009, 33, 2199-2203.
    48. Kao, H. M.; Liao, C. H.; Palani, A.; Liao, Y. C. Micro Meso Mater. 2008, 113, 212-223.
    49. Kruk, M.; Asefa, T.; Jaroniec, M.; Ozin, G. A. J. Am. Chem. Soc. 2002, 124, 6383-6392.
    50. Yan, Z.; Tao, S.; Yin, J.; Li, G. J. Mater. Chem. 2006, 16, 2347-2353
    51. Fiorilli, S.; Camarota, B.; Perrachon, D.; Bruzzoniti, M. C.; Garrone, E.; Onida, B. Chem. Commun. 2009, 4402-4404.
    52. Sayari, A.; Hamoudi, S. Chem. Mater. 2001, 13, 3151-3168.
    53. (a) Kruk, M.; Asefa, T.; Whitnal, W.; Kruk, M.; Yoshina-Ishii, C.; Jaroniec, M.; Ozin, G. A. J. Am. Chem. Soc. 2002, 124, 13886-13895.
    (b) Sayari, A.; Hamoudi, S.; Yang, Y.; Moudrakovski, I. L.; Ripmeester, J. R. Chem. Mater. 2000, 12, 3857-3863.
    (c) Yang, Q.; Li, Y.; Zhang, L.; Yang, J.; Liu, J.; Li, C. J. Phys. Chem. B 2004, 108, 7934-7937.
    (d) Guan, S.; Inagaki, S.; Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc. 2000, 122, 5660-5661.
    54. Pan, Y. C.; Wu, H. Y.; Kao, C. C.; Kao, H. M.; Shieh, Y. N.; Fey, G. T. K.; Chang, J. H.; Tsai, H. H. G. J. Phys. Chem. C 2009, 113, 18251-18258.
    55. (a) Yang, C. M.; Wang, Y.; Zibrowius, B.; Schuth, F. Phys. Chem. Chem. Phys. 2004, 6, 2461–2467.
    (b) Creighton, T. E.; Proteins: Structures and Molecular Properties
    W. H. Freeman & Co., New York, 2nd edn., 1993.
    56. (a) Ho, K. Y.; McKay, G.; Yeung, K. L. Langmuir 2003, 19, 3019-3024.
    (b) Yang, C. M.; Zibrowius, B.; Schüth, F. Chem. Commun. 2003, 1772-1773.
    (c) Liu, N.; Assink, R. A.; Brinker, C. J. Chem. Commun. 2003, 370-371
    57. (a) Yan, Z.; Tao, S.; Yin, J.; Li, G. J. Mater. Chem. 2006, 16, 2347-2353.
    (b) Tang, Q.; Xu, Y.; Wu. D. J Solid State Chem. 2006, 179, 1513-1520.
    (c) Rosenholm, J. M.; Czuryszkiewicz, T.; Kleitz, F. Langmuir 2007, 23, 4315-4323.
    (d) Bruzzoniti, M. C.; Prelle, A.; Sarzanini, C.; Onida, B.; Fiorilli, S.; Garrone. E. J. Sep. Sci. 2007, 30, 2414-2420.
    (e) Langley, E.; Kemppainen, J. A.; Wilson, E. M. The Journal of Biological Chemistry 1998, 273, 92-101.
    58. Pan, Y. C.; Wu, H. Y.; Lee, L. P.; Jheng, G. L.; Fey, G. T. K.; Kao, H. M. Micro Meso Mater. 2009, 123, 78-90.
    59. Perry, R. J.; O’Brien, M. J. Energy Fuels 2011, 25, 1906-1918.
    60. (a) Inagaki, S.; Guan, S.; Ohsuna, T.; Terasaki, O. Nature 2002, 416, 304-307.
    (b) Yang, Q.; Kapoor, M. P.; Inagaki, S. J. Am. Chem. Soc. 2002, 124, 9694-9695.
    (c) Okamoto, K.; Kapoor, M. P.; Inagaki, S. Chem. Commun. 2005, 14231425.
    (d) Liu, J.; Yang, Q.; Kapoor, M. P.; Setoyama, N.; Inagaki, S.; Yang, J.; Zhang, L. J. Phys. Chem. B, 2005, 109, 12250-12256.
    (e) Fujita, S.; Inagaki, S. Chem. Mater. 2008, 20, 891–908.
    61. Cho,E. B.; Mandal, M.; Jaroniec, M. Chem. Mater. 2011, 23, 1971-1976.
    62. Goto, Y.; Inagaki, S. Micro Meso Mater. 2006 89, 103.
    63. (a) Burri, D. R.; Jun, K. W.; Kim, Y. H.; Kim, J. M.; Park, S. E.; Yoo, J. S. Chemistry Letters 2002, 212-213.
    (b) Das, B. K.; Clark, J. H. Chem. Commun. 2000, 605–606.
    (c) Butterworth, A. J.; Clark, J. H.; Waltona, P. H.; Barlowb, S. J. Chem. Commun. 1996, 1859-1860.
    (d) Ho, K. Y.; McKay, G.; Yeung, K. L. Langmuir 2003, 19, 3019-3024.
    64. Asefa, T.; Kruk, M.; MacLachlan, M. J.; Coombs, N.; Grondey, H.; Jaroniec, M.; Ozin, G. A. Adv. Funct. Mater. 2001, 11, 447-456.
    65. Suryanarayana, C.; Norton, G. M. X-ray Diffraction : A Practical Approach, publications : New York, Plenum Press, c1998.
    66. http://www.srrc.gov.tw/chi/about/
    67. Brunauer, S.; Emmett, P. H.; Teller, E. J. Am. Chem. Soc. 1938, 60, 309-319.
    68. Barrett, E. P.; Joyner, L. S.; Halenda, P. P. J. Am. Chem. Soc. 1951,
    73, 373-380.
    69. Brunauer, S.; Deming, L. S.; Deming, W. S.; Teller, E. J. Am. Chem. Soc., 1940, 62, 1723-1732.
    70. Ertl, G.; KnÖzinger, H.; Weitkamp, J. “ Handbook of Heterogeneous Catalysis ”, vol 3, VCH D-69451 Weinheim 1997, 1058.
    71. Holler, F. J.; Skoog, D. A.; Crouch, S. R. Principles of Instrumental Analysis 6th Edition, publications : Belmont, CA : Thomson Brooks/Cole, c2007.
    72. Xu, W.; Gao, Q.; Xu, Y.; Wu, D.; Sun, Y.; Shen, W.; Deng, F. Journal of Solid State Chemistry 2008, 181, 2837–2844.
    73. Liu, N.; Assinkb, R. A.; Brinker, C. J. Chem. Commun. 2003, 370–371.
    74. (a) Wahab, M. A.; Kim, I.; Ha, C. S. Micro Meso Mater. 2004, 69, 19–27.
    (b) Asefa, T.; Kruk, M.; MacLachlan, M. J.; Coombs, N.; Grondey, H.; Jaroniec, M.; Ozin, G. A. J. Am. Chem. Soc. 2001, 123, 8520-8530.
    (c) Beaudet, L.; Hossain, K. Z.; Mercier, L. Chem. Mater. 2003, 15, 327-334.
    (d) Richer, R.; Mercier, L. Chem. Mater. 2001, 13, 2999-3008.
    75. Huh, S.; Wiench, J. W.; Yoo, J. C.; Pruski, M.; Lin, V. S. Y. Chem. Mater. 2003, 15, 4247-4256.
    76. Corriu, J. P.; Datas, L.; Guari, Y.; Mehdi, A.; Reyéa, C.; Thieuleux, C. Chem. Commun. 2001, 763.
    77. (a) Bion, N.; Ferreira, P.; Valente, A.; Goncalves, I. S.; Rocha, J. J. Mater. Chem. 2003, 13, 1910–1913.
    (b) Kruk, M.; Jaroniec, M.; Guan, S.; Inagaki, S. J. Phys. Chem. B 2001, 105, 681-689.
    78. Yang, C. M.; Zibrowius. B.; Schüth, F. Chem. Commun. 2003, 1772–1773.
    79. (a) Delacroix, H.; Gulik, K. T.; Mariani, P.; Luzzati, V. J.Mol.Biol. 1993, 229, 526-39.
    (b) Wu, H. Y.; Chen, C. T.; Hung, I. M.; Liao, C. H.; Vetrivel, S.; Kao, H. M. J. Phys. Chem. C 2010, 114, 7021–7029.
    (c) Trabelsi, S.; Albouy, P. A.; Imperor-Clerc, M.; Guillot, S.; Langevin, D. ChemPhysChem. 2007, 8, 2379 – 2385.
    80. (a) Shen, S.; Tian, B.; Yu, C.; Xie, S.; Zhang, Z.; Tu, B.; Zhao, D. Chem. Mater. 2003, 15, 4046-4051.
    (b) Ming-Chang Liu, M. C.; Chang, C. S.; Chan, J. C. C.; Sheu, H. S.; Cheng, S. Micro Meso Mater. 2009, 121, 41-51.

    QR CODE
    :::