| 研究生: |
簡辰芳 Chen-fang Chien |
|---|---|
| 論文名稱: |
具苯環、氰基及羧酸官能基之中孔洞材料 SBA-1 的合成與鑑定 Synthesis and Characterization of CubicMesoporous Silicas SBA-1 with Benzene, Cyanide and Carboxylic Acid Functionalities |
| 指導教授: |
高憲明
Hsien-ming Kao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 羧酸官能基 、氰基 、苯環 、中孔洞材料 |
| 外文關鍵詞: | mesoporous, benzene, cyanide, carboxylic acid functionalities |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要是合成具有雙官能基之 SBA-1 中孔洞材料,共分為兩個部分,第一部分是利用 界面活性劑 Cetyltriethylammonium bromide (CTEABr) 作為模板試劑,1,4-bis (trithoxysilyl)-benzene (BTEB) 與 3-(Triethoxysilyl)-Propionitrile (CNTES) 為共同矽源,在 HCl/CTEABr = 140 下,合成出具有苯環和氰基官能基之中孔洞材料 SBA-1,之後再利用乙醇和少量鹽酸移除界面活性劑 CTEABr,樣品中 CNTES 含量可達 50%,仍具有良好的結構規則度。接著也是利用CTEABr 作為模板試劑,1,4-bis (trithoxysilyl)-benzene (BTEB) 與 3-(Triethoxysilyl)-Propionitrile (CNTES) 為共同矽源,在 HCl/CTEABr = 230 下,合成中孔洞材料 SBA-1,當反應中酸量提高時,有部分氰基官能基會被氧化成羧酸官能基,使得此中孔洞材料為含有苯環、氰基和羧酸官能基,而樣品中 CNTES 含量可達 50%。
第二部分則是將第一部分所合成出的 SBA-1 中孔洞材料利用 48% H2SO4 反應一天後將樣品中所有的氰基官能基氧化成羧酸官能基。
以上兩部分的實驗都會利用 X-ray 粉末繞射、固態核磁共振光譜、熱重分析儀、FT-IR 紅外線光譜及等溫氮氣吸脫附等儀器鑑定材料的特性,以了解在相同矽源下,增加反應中的酸量對 SBA-1 材料所造成的影響。
The thesis is divided into two parts, both studied on bifunctional periodic mesoporous organosilicas (BPMOs). In part one, the BPMOs containing both benzene functional moieties in the frame work and terminal cyanide groups protruding into the channel pores haved been synthesized with CTEABr as the structure-directing agent under acidic conditions (CTEABr/HCl = 140) via co-condensation of 1,4-bis (trithoxysilyl)-benzene (BTEB) and 3-(Triethoxysilyl)-Propionitrile (CNTES). A high degree of structural ordering is still retained up to 50 mol% CNTES loading (based on silicon) in the synthesis mixture.Then, well-ordered cubic mesoporous silica SBA-1 functionalized with cyanide and carboxylic acid functional groups have been synthesized via co-condensation of 1,4-bis(triethoxysilyl)benzene (BTEB) and 3-(Triethoxysilyl)-Propionitrile (CNTES) templated by CTEABr under acidic condition (CTEABr/HCl = 230). A high degree of structural ordering is still retained up to 50 mol% CNTES loading (based on silicon) in the synthesis mixture.
In part two, the BPMOs, which have been synthesized, hydrolyzed all the cyanide groups to carboxylic acid group by refluxing with 48% sulfuric acid at 343 K for 24 h.
In the thesis, the materials thus obtained were characterized by a variety of techniques including X-ray diffraction (XRD), solid state 13C CP/MAS NMR, thermogravimetric analysis (TGA), FT-IR and nitrogen sorption measurements.
1. IUPAC Manual of Symbols and Terminology, Appendix 2, Part 1, Colloid and Surface Chemistry, Pure Appl. Chem., 1972, 31, 57-638.
2. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beak, J.S. Nature, 1992, 359, 710-712.
3. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonwicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T-W.; Olson, D. H.; Sheppard, E. W.; Higgins, S. B.; Schlenker, J. L. J. Am. Chem. Soc., 1992, 114, 10834-10843.
4. B. Munoz, A. Ramila, J. Perez-Pariente, I. Diaz, M. Vallet-Regi. Chem. Mater., 2003, 15, 500-503.
5. Yanagisawa, T.; Shimizu, T.; Kuroda, K.; Kato, C. Bull. Chem. Soc. Jpn., 1990, 63, 988-992.
6. Sayari, A. Chem. Mater., 1996, 8, 1840-1852.
7. Harthmann, M.; Popll, A.; Kenvan, L. J. Phys. Chem., 1996, 100, 9906-9910.
8. Hamza, A.; Srinivas, D. Catal. Lett., 2009, 128, 434-442.
9. Kulkarni, S. J.; Rohitha, C. N.; Narender, N. J. Porous. Mater., 2010, 17, 321-328.
10. Park, Y. K.; Choi, S. B.; Nam, H. J.; Jung, D. Y.; Ahn, H. C.; Choi, K.; Furukawa, h.; Kim, J. Chem. Commun., 2010, 46, 3086-3088
11. (a) Wu, C.-G.; Bein, T. Science, 1994, 264, 1757-1759. (b) Wu, C.-G.; Bein, T. Science, 1994, 266, 1013-1015. (c) Wu, C.-G.; Bein, T. Chem. Mater., 1994, 6, 1109-1112.
12. Wang, A.; Shi, Z. X.; Zhang, J.; Wang, L. J. Compos. Mater., 2008, 42, 1151-1157.
13. Ward, E. P. W.; Arslan, I. ; Bleloch, A.; Thomas, J. M.; Midgley, P. A. Journal of Physics : Conference Series, 2006, 26, 207-210.
14. Lee, Y. S.; Surjadi, D.; Rathman, J. F. Langmuir, 1996, 12, 6202-6210.
15. Dai, Z.; Lu, G.; Bao, J.; Huang, X.; Ju, H. Electroanalysis, 2007, 19, 604-607.
16. Radu, D. R.; Lai, C. Y.; Jeftinija, K.; Rowe, E. W.; Jeftinija, S.; Lin, V. S.-Y. J. Am. Chem. Soc., 2004, 126, 13216-13217.
17. Zhao, Y.; Trewyn, B. G.; Slowing, I. I.; Lin, V. S.-Y. J. Am. Chem. Soc., 2009, 131, 8398-8400.
18. Hartmann, M.; Jung, D. J. Mater. Chem., 2010, 20, 844-857.
19. Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schuth, F.; Stucky, G. D. Nature, 1994, 368, 317-321.
20. Huo, Q.; Margolese, D. I.; Ciesla, U.; Demuth, D. G.; Feng, P.; Gier, T. E.; Sieger, P.; Firouzi, A.; Chmelka, B. F.; Schuth, F.; Stucky, G. D. Chem. Mater., 1994, 6, 1176-1191.
21. Kim, M. J.; Ryoo, R. Chem. Mater., 1999, 11, 487-491.
22. Sakamoto, Y.; Kaneda, M.; Terasaki, O.; Zhao, D. Y.; Kim, J. M.; Stucky, G.; Shim, H. J.; Ryoo, R. Nature, 2000, 408, 449-453.
23. (a) Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.;Chmelka, B. F.; Stucky, G.D. Science. 1998, 279, 548-552.
(b) Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc. 1998, 120, 6024-6036.
24. Pluronic poly(alkene oxide) triblock copolymers are trademarked products of BASF, Mt. Olive, NJ.
25. (a) Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schüth, F.; Stucky, G. D. Nature 1994, 368, 317-321.
(b) Chen, C.; Li, H.; Davis, M. E. Microporous Mater. 1993, 2, 17-26.
(c) Attard, G. S.; Glyde, J. C. Nature. 1995, 378, 366-368.
(d) Göltner, C. G.; Antonietti, M. Adv. Mater. 1997, 9, 431-436.
26. (a) Tanev, P. T.; Pinnavaia, T. J. Science. 1995, 267, 865-867.
(b) Bagshaw, S. A.; Prouzet, E.; Pinnavaia. T. J. Science. 1995, 269, 1242-1244.
27. (a) Prouzet, E.; Pinnavaia. T. J. Angew. Chem. Int. Ed.; 1997, 36, 516-518.
(b) Antonietti, M.; Göltner, C. G. Angew. Chem. Int. Ed.; 1997, 36, 910-928.
(c) Firouzi, A.; Atef, F.; Oertli, A. G.; Stucky, G. D.; Chmelka, B. F. J. Am. Chem. Soc. 1997, 119, 3596-3610.
28. (a) Imperor-Clerc, M.; Davidson, P.; Davidson, A. J. Am. Chem. Soc. 2000, 122, 11925-11933.
(b) Kruk, M.; Jaroniec, M.; Ko, C. H.; Ryoo, R. Chem. Mater. 2000, 12, 1961-1968.
(c) Ryoo, R.; Ko, C. H.; Kruk, M.; Antochshuk, V.; Jaroniec, M. J. Phys. Chem. B. 2000, 104, 11465-11471.
(d) Ravikovitch, P. I.; Neimark, A. V. J. Phys. Chem. B. 2001, 105, 6817-6823.
29. Piotr, K.; Claudia, W.; Stefan, K. Chem. Mater. 1994, 16, 2869-2880.
30. Schubert, U.; Husing, N. Synthesis of inorganic materials, chapter 4 , Wiley-Interscience publications: New York, 2000.
31. Israelachvili, J. N. Colloids Surf: A: Physiocochem. Eng. Aspects 1993, 1, 91-112.
32. Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W. Biochim. Biophys. Acta. 1977, 470, 185-201.
33. Sakamoto, Y.; Kaneda, M.; Terasaki, O.; Zhao, D. Y.; Kim, J. M.; Stucky, G.; Shin, H. J.; Ryoo, R. Nature 2000, 408, 449-453.
34. Evans, F. D.; Wennerstrom, H. “The Colloidal Domain”, 2nd Ed, VHC, New York, 1999.
35. Qi, L.; Ma, J.; Cheng, H.; Zhao, Z. “Colloids and Surfaces A”, 1996, 111, 195-202.
36. (a) Schierbaum, K. D.; Weiss, T.; Velzen, E. U. T. van; Engbersen, J. F. J.; Reinhoudt, D. N.; Gopel, W. Science., 1994, 265, 1413-1415.
(b) Sayari, A. Chem. Mater., 1996, 8, 1840-1852.
(c) Feng, X.; Fryxell, G. E.; Wang, L.-Q; Kim. A. Y.; Liu, J.; Kemner, K. M. Science, 1997, 276, 923-926.
37. Tsai, C. T.; Pan, Y. C.; Ting, C. C.; Vetrivel, S.; Chiang, A. S. T.; Fey, G. T. K.; Kao, H. M. Chem. Commun., 2009, 5018-5020.
38. (a) Tanglumlert, W.; Imae, Y.; White, T. J.; Wongkasemjit, S. Cata. Commun., 2009, 10, 1070-1073.
(b) Wongkasemjit, S.; Tamuang, S.; Tanglumlert, W.; Imae, T. Mater. Chem. Phys., 2009, 117, 301-306.
(c) Szczodrowski, K.; Prélot, B.; Lantenois, S.; Douillard, J. M.; Zajac, J. Micro Meso Mater., 2009, 124, 84-93.
39. Pan, Y. C.; Wu, H. Y.; Lee, L. P.; Jheng, G. L.; Fey, G. T. K.; Kao, H. M. Microporous Mesoporous Mater., 2009, 123, 78-90.
40. (a) Liu, J. Feng, X.; Fryxell, G. E.; Wang, L.-Q.; Kim. A. Y.; Gong, M. L. Adv. Meter. 1998, 10, 161-165.
(b) Brunel, D. Micro Meso Mater. 1999, 27, 329-344.
(c) Impens, N. R. E. N.; Van der Voort, P.; Vansant, E. F. Micro Meso Mater. 1999, 28, 217-232.
(d) Walcarius, A.; Etienne, M.; Lebeau, B. Chem. Mater. 2003, 15, 2161-2173.
41. Stein, A.; Melde, B. J.; Schroden, R. C. Adv. Meter. 2000, 12, 1403-1419.
42. (a) Steel, A.; Carr, S. W.; Anderson, M. W. Chem. Mater. 1995, 7, 1829-1832.
(b) Lim, M. H.; Stein, A. Chem. Mater. 1999, 11, 3285-3295.
43. Kim, M. H.; Blanford, C. F.; Stein, A. Chem. Mater. 1998, 10, 467-470.
44. (a) Mercier, L.; Pinnavaia, T. J. Chem. Mater. 2000, 12, 188-196
(b) Kruk, M.; Asefa, T.; Coombs, N.; Jaroniec, M.; Qzin, G. A. J. Mater. Chem. 2002, 12, 3452-3457.
45. (a) Hall, S. R.; Fowler, C. E.; Lebeau, B.; Mann, S. Chem. Commun. 1999, 201-202.
(b) Kao, H. M.; Liao, C. H.; Hung, T. T.; Pan, Y. C.; Chiang, A. S. T. Chem. Mater. 2008, 20, 2412-2422.
46. Wu, H. Y.; Chen, C. T.; Hung, I. M.; Liao, C. H.; Vetrivel, S.; Kao, H. M. J. Phys. Chem. C 2010, 114, 7021-7029.
47. (a) Mori, Y.; Pinnavaia, T. J. Chem. Mater. 2001, 13, 2173-2178.
(b) Kao, H. M.; Shen, T. Y.; Wu, J. D.; Lee, L. P. Micro Meso Mater. 2008, 110, 461-471.
(c) Kao, H. M.; Lee, L. P.; Palani, A. Anal. Chem. 2008, 80, 3016-3019.
(d) Kao, H. M.; Chiu, P. J.; Jheng, G. L.; Kao, C. C.; Tsai, C. T.; Yau, S. L.; Tsai, H. H. G.; Chou, Y. K. New J. Chem. 2009, 33, 2199-2203.
48. Kao, H. M.; Liao, C. H.; Palani, A.; Liao, Y. C. Micro Meso Mater. 2008, 113, 212-223.
49. Kruk, M.; Asefa, T.; Jaroniec, M.; Ozin, G. A. J. Am. Chem. Soc. 2002, 124, 6383-6392.
50. Yan, Z.; Tao, S.; Yin, J.; Li, G. J. Mater. Chem. 2006, 16, 2347-2353
51. Fiorilli, S.; Camarota, B.; Perrachon, D.; Bruzzoniti, M. C.; Garrone, E.; Onida, B. Chem. Commun. 2009, 4402-4404.
52. Sayari, A.; Hamoudi, S. Chem. Mater. 2001, 13, 3151-3168.
53. (a) Kruk, M.; Asefa, T.; Whitnal, W.; Kruk, M.; Yoshina-Ishii, C.; Jaroniec, M.; Ozin, G. A. J. Am. Chem. Soc. 2002, 124, 13886-13895.
(b) Sayari, A.; Hamoudi, S.; Yang, Y.; Moudrakovski, I. L.; Ripmeester, J. R. Chem. Mater. 2000, 12, 3857-3863.
(c) Yang, Q.; Li, Y.; Zhang, L.; Yang, J.; Liu, J.; Li, C. J. Phys. Chem. B 2004, 108, 7934-7937.
(d) Guan, S.; Inagaki, S.; Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc. 2000, 122, 5660-5661.
54. Pan, Y. C.; Wu, H. Y.; Kao, C. C.; Kao, H. M.; Shieh, Y. N.; Fey, G. T. K.; Chang, J. H.; Tsai, H. H. G. J. Phys. Chem. C 2009, 113, 18251-18258.
55. (a) Yang, C. M.; Wang, Y.; Zibrowius, B.; Schuth, F. Phys. Chem. Chem. Phys. 2004, 6, 2461–2467.
(b) Creighton, T. E.; Proteins: Structures and Molecular Properties
W. H. Freeman & Co., New York, 2nd edn., 1993.
56. (a) Ho, K. Y.; McKay, G.; Yeung, K. L. Langmuir 2003, 19, 3019-3024.
(b) Yang, C. M.; Zibrowius, B.; Schüth, F. Chem. Commun. 2003, 1772-1773.
(c) Liu, N.; Assink, R. A.; Brinker, C. J. Chem. Commun. 2003, 370-371
57. (a) Yan, Z.; Tao, S.; Yin, J.; Li, G. J. Mater. Chem. 2006, 16, 2347-2353.
(b) Tang, Q.; Xu, Y.; Wu. D. J Solid State Chem. 2006, 179, 1513-1520.
(c) Rosenholm, J. M.; Czuryszkiewicz, T.; Kleitz, F. Langmuir 2007, 23, 4315-4323.
(d) Bruzzoniti, M. C.; Prelle, A.; Sarzanini, C.; Onida, B.; Fiorilli, S.; Garrone. E. J. Sep. Sci. 2007, 30, 2414-2420.
(e) Langley, E.; Kemppainen, J. A.; Wilson, E. M. The Journal of Biological Chemistry 1998, 273, 92-101.
58. Pan, Y. C.; Wu, H. Y.; Lee, L. P.; Jheng, G. L.; Fey, G. T. K.; Kao, H. M. Micro Meso Mater. 2009, 123, 78-90.
59. Perry, R. J.; O’Brien, M. J. Energy Fuels 2011, 25, 1906-1918.
60. (a) Inagaki, S.; Guan, S.; Ohsuna, T.; Terasaki, O. Nature 2002, 416, 304-307.
(b) Yang, Q.; Kapoor, M. P.; Inagaki, S. J. Am. Chem. Soc. 2002, 124, 9694-9695.
(c) Okamoto, K.; Kapoor, M. P.; Inagaki, S. Chem. Commun. 2005, 14231425.
(d) Liu, J.; Yang, Q.; Kapoor, M. P.; Setoyama, N.; Inagaki, S.; Yang, J.; Zhang, L. J. Phys. Chem. B, 2005, 109, 12250-12256.
(e) Fujita, S.; Inagaki, S. Chem. Mater. 2008, 20, 891–908.
61. Cho,E. B.; Mandal, M.; Jaroniec, M. Chem. Mater. 2011, 23, 1971-1976.
62. Goto, Y.; Inagaki, S. Micro Meso Mater. 2006 89, 103.
63. (a) Burri, D. R.; Jun, K. W.; Kim, Y. H.; Kim, J. M.; Park, S. E.; Yoo, J. S. Chemistry Letters 2002, 212-213.
(b) Das, B. K.; Clark, J. H. Chem. Commun. 2000, 605–606.
(c) Butterworth, A. J.; Clark, J. H.; Waltona, P. H.; Barlowb, S. J. Chem. Commun. 1996, 1859-1860.
(d) Ho, K. Y.; McKay, G.; Yeung, K. L. Langmuir 2003, 19, 3019-3024.
64. Asefa, T.; Kruk, M.; MacLachlan, M. J.; Coombs, N.; Grondey, H.; Jaroniec, M.; Ozin, G. A. Adv. Funct. Mater. 2001, 11, 447-456.
65. Suryanarayana, C.; Norton, G. M. X-ray Diffraction : A Practical Approach, publications : New York, Plenum Press, c1998.
66. http://www.srrc.gov.tw/chi/about/
67. Brunauer, S.; Emmett, P. H.; Teller, E. J. Am. Chem. Soc. 1938, 60, 309-319.
68. Barrett, E. P.; Joyner, L. S.; Halenda, P. P. J. Am. Chem. Soc. 1951,
73, 373-380.
69. Brunauer, S.; Deming, L. S.; Deming, W. S.; Teller, E. J. Am. Chem. Soc., 1940, 62, 1723-1732.
70. Ertl, G.; KnÖzinger, H.; Weitkamp, J. “ Handbook of Heterogeneous Catalysis ”, vol 3, VCH D-69451 Weinheim 1997, 1058.
71. Holler, F. J.; Skoog, D. A.; Crouch, S. R. Principles of Instrumental Analysis 6th Edition, publications : Belmont, CA : Thomson Brooks/Cole, c2007.
72. Xu, W.; Gao, Q.; Xu, Y.; Wu, D.; Sun, Y.; Shen, W.; Deng, F. Journal of Solid State Chemistry 2008, 181, 2837–2844.
73. Liu, N.; Assinkb, R. A.; Brinker, C. J. Chem. Commun. 2003, 370–371.
74. (a) Wahab, M. A.; Kim, I.; Ha, C. S. Micro Meso Mater. 2004, 69, 19–27.
(b) Asefa, T.; Kruk, M.; MacLachlan, M. J.; Coombs, N.; Grondey, H.; Jaroniec, M.; Ozin, G. A. J. Am. Chem. Soc. 2001, 123, 8520-8530.
(c) Beaudet, L.; Hossain, K. Z.; Mercier, L. Chem. Mater. 2003, 15, 327-334.
(d) Richer, R.; Mercier, L. Chem. Mater. 2001, 13, 2999-3008.
75. Huh, S.; Wiench, J. W.; Yoo, J. C.; Pruski, M.; Lin, V. S. Y. Chem. Mater. 2003, 15, 4247-4256.
76. Corriu, J. P.; Datas, L.; Guari, Y.; Mehdi, A.; Reyéa, C.; Thieuleux, C. Chem. Commun. 2001, 763.
77. (a) Bion, N.; Ferreira, P.; Valente, A.; Goncalves, I. S.; Rocha, J. J. Mater. Chem. 2003, 13, 1910–1913.
(b) Kruk, M.; Jaroniec, M.; Guan, S.; Inagaki, S. J. Phys. Chem. B 2001, 105, 681-689.
78. Yang, C. M.; Zibrowius. B.; Schüth, F. Chem. Commun. 2003, 1772–1773.
79. (a) Delacroix, H.; Gulik, K. T.; Mariani, P.; Luzzati, V. J.Mol.Biol. 1993, 229, 526-39.
(b) Wu, H. Y.; Chen, C. T.; Hung, I. M.; Liao, C. H.; Vetrivel, S.; Kao, H. M. J. Phys. Chem. C 2010, 114, 7021–7029.
(c) Trabelsi, S.; Albouy, P. A.; Imperor-Clerc, M.; Guillot, S.; Langevin, D. ChemPhysChem. 2007, 8, 2379 – 2385.
80. (a) Shen, S.; Tian, B.; Yu, C.; Xie, S.; Zhang, Z.; Tu, B.; Zhao, D. Chem. Mater. 2003, 15, 4046-4051.
(b) Ming-Chang Liu, M. C.; Chang, C. S.; Chan, J. C. C.; Sheu, H. S.; Cheng, S. Micro Meso Mater. 2009, 121, 41-51.