跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳威任
Wei-Ren Chen
論文名稱: 使用FAM Z05沸石對水之小型吸附式空調性能研究
指導教授: 楊建裕
Chien-Yuh Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 108
中文關鍵詞: 吸附式製冷FAM Z05沸石-水
外文關鍵詞: adsorption cooling, FAM Z05 zeolite-water
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗製作FAM Z05沸石-水為吸附配對的吸附床,測試用於小型吸附式系統之性能,並比較與矽膠吸附床的差異。製作的沸石吸附床有兩種,第一種為使用PVA黏著劑塗佈沸石,第二種為使用PVP黏著劑塗佈沸石,塗佈的沸石的重量分別為1.17 kg及1.43 kg。實驗條件為固定冷卻水溫度在25度及冰水溫度20度,改變參數為熱水溫度60、70、80度,以及循環時間20、25、30、35、40分鐘。實驗結果得知,PVA黏著劑之沸石吸附床COP在熱水溫度70度較高,且循環時間越長COP越高,相較於矽膠吸附床所需的熱水溫度較低,SCP在熱水80度最高。PVP黏著劑之沸石吸附床因沸石的孔隙被PVP黏著劑堵住,造成無法吸附水汽,使系統沒有製冷。


    In this system, a FAM Z05 zeolite-water adsorption bed is designed and system performance is measured, then compare to silica gel-water adsorption bed. Two adsorption bed are tested in experiment. One is using PVA glue to coating zeolite on heat exchanger, another one is using PVP glue to coating zeolite, and the weight of zeolite is 1.17 kg and 1.43 kg. In experimental condition, there are fixed cooling water temperature at 25 degree and chill water temperature at 20 degree, and tested three different hot water temperature are 60, 70 and 80 degree, and five cycle time are 20, 25, 30, 35 and 40 minute. The result shows that, the COP of adsorption bed which is coated by PVA glue in hot water at 70 degree is better, and COP is increase with cycle time increase, compare to silica gel adsorption bed the desorption temperature is much lower, SCP at hot water 80 degree is highest, the adsorption bed which is coated by PVP glue did not chill, because of the PVP glue blocked the zeolite’s porosity that the zeolite can not adsorb water vapor.

    摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 X 符號說明 XI 第一章 前言 1 1.1 研究背景 1 1.2 研究目的 3 第二章 文獻回顧 7 2.1 吸附式製冷 7 2.2 吸附材料 8 2.3 不同型式吸附床 9 2.4 一體式吸附系統 9 2.5 沸石-水吸附式系統 10 2.6 研究項目 11 第三章實驗方法 22 3.1 吸附床製作 22 3.1.1 吸附床熱交換器設計 22 3.1.2 吸附劑(沸石)塗佈 22 3.2 實驗系統 23 3.3 實驗量測設備 23 3.3.1 溫度量測 24 3.3.2 流量量測 24 3.3.3 壓力量測 24 3.3.4 資料擷取系統 24 3.4 實驗步驟 25 3.4.1 抽真空過程和冷媒填充 25 3.4.2 性能測試 26 3.5 數據換算 26 3.5.1 加熱率 26 3.5.2 製冷率 27 3.5.3 COP 和SCP 27 第四章 結果與討論 41 4.1 吸附式製冷循環 41 4.2 PVA黏著劑之吸附床性能分析 43 4.2.1 熱水溫度60oC性能分析 43 4.2.2 熱水溫度70oC性能分析 43 4.2.3 熱水溫度80oC性能分析 43 4.2.4 腔體溫度與壓力變化 44 4.2.5 計算結果 44 4.3 PVP與石膏為黏著劑之吸附床性能分析 46 4.3.1 熱水溫度60oC性能分析 46 4.3.2 熱水溫度70oC性能分析 46 4.3.3 熱水溫度80oC性能分析 46 4.3.4 計算結果 47 第五章 結論 58 參考文獻 59 附錄 62 A 實驗誤差分析 62 B.製冷循環圖 64

    [1] 林素琴、林志勳,2017,「我國住宅部門電力使用研究」,台灣
    能源期刊,第4卷第三期。
    [2] 王智正、謝鎮州、張文師、唐震宸,2004,「熱能驅動之固體吸
    附式製冷實驗研究」,中國機械工程學會第二十一屆全國學術研討會。
    [3] 謝鎮州、張文師、王智正、唐震宸,2004,「運用工業廢熱之固
    體吸附式製冷系統」,化工技術,第12 卷第四期。
    [4] H.W.B. Teo, A. Chakraborty, F. Wu, 2017, “Improved adsorption
    characteristics data for AQSOA types zeolites and water systems under static and dynamic conditions,” Microporous and Mesoporous Materials, Vol. 242, pp. 109-117.
    [5] V.H. Chaudhari, A.D. Desai, 2017, “Development of Adsorption
    Cooling Technology using Waste Heat Energy Sources: A Review,” Engineering Technology Science and Research, Vol. 4,pp. 2394-3386
    [6] E.C. Boelman, B.B. Saha, T. Kashiwagi, 1995, “Experimental
    investigation of a silica gel water adsorption refrigeration cycle The influence of operating conditions on cooling output and COP,” ASHRAE Transactions, Vol. 101, NO. 2, pp. 358-366.
    [7] Y.L. Liu, R.Z. Wang, Z.Z. Xia, 2005, “Experimental performance of
    a silica gel–water adsorption chiller,” Applied Thermal Engineering, Vol. 25, pp. 359–375.
    [8] K. Kubota, T. Ueda, R. Fujisawa, J. Kobayashi, F. Watanabe, M.
    Hasatani, N. Kobayashi, 2008, “Cooling output performance of a prototype adsorption heat pump with fin-type silica gel tube module,” Applied Thermal Engineering, Vol. 28, pp. 87-93.
    [9] 陳又維,2010,「薄矽膠層吸附床之性能研究」,國立中央大學
    能源工程研究所碩士論文。
    [10] 林宗漢,2011,「矽膠塗佈厚度對扁平管吸附床性能之影響」,
    國立中央大學機械工程研究所碩士論文。
    [11] W.S. Chang, C.C. Wang, C.C. Shieh, 2007, "Experimental study of a
    solid adsorption cooling system using flat-tube heat exchangers as adsorption bed,” Applied Thermal Engineering, Vol. 27, pp. 2195-2199.
    [12] 張鈞磊,2011,「小型吸附式空調系統研究」,國立中央大學
    能源工程研究所碩士論文。
    [13] G. Restuccia, A. Freni, F. Russo, S. Vasta, 2005, “Experimental
    investigation of a solid adsorption chiller based on a heat exchanger coated with hydrophobic zeolite,” Applied Thermal Engineering, Vol. 25, pp. 1419−1428.
    [14] C.Y.H. Chao, C.Y. Tso, K.C. Chan, C.L. Wu, 2015, “Experimental
    performance analysis on an adsorption cooling system using zeolite 13X/CaCl2 adsorbent with various operation sequences,” Heat and Mass Transfer, Vol. 85, pp. 343-355.
    [15] Y. Liu, K.C. Leong, 2005, “The effect of operating conditions on the
    performanceof zeolite/water adsorption cooling systems,” Applied Thermal Engineering, Vol. 25, pp. 1403-1418.
    [16] Y.D. Kim, A. Myat, N.K. Choon, K. Thu, 2013, “Experimental
    investigation on the optimal performance of Zeolite water adsorption chiller,” Applied Energy, Vol 102, pp. 582-590.

    QR CODE
    :::