| 研究生: |
梁興豪 Hsing-Hao Liang |
|---|---|
| 論文名稱: |
探討不同量子化學方法對PR+COSMOSAC狀態方程式應用於預測純物質及混合流體相行為之影響 |
| 指導教授: |
謝介銘
Chieh-Ming Hsieh |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | PR+COSMOSAC 、量子化學計算軟體 、熱力學性質 、臨界性質 、測固體溶質於超臨界二氧化碳之溶解度 |
| 外文關鍵詞: | PR+COSMOSAC, quantum chemical packages, thermodynamic properties, critical properties, solubility of solid solutes in supercritical carbon dioxide |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
熱力學性質對化工製程而言是很重要的資訊,Peng-Robinson+COSMOSAC狀態方程式(本文以PR+COSMOSAC表示之)已被證明可以提供純物質之熱力學性質與混合流體相行為可靠的預測結果,且不會有缺少參數的問題,在以COSMO為基礎之模型中,分子間相互作用力由QM/COSMO計算得到之分子表面電荷決定,在先前的文獻中已經證明COSMOSAC模型在預測流體相平衡時的準確度可能會受到使用之量子化學計算方法影響。
本研究探討使用不同量子化學計算軟體(ADF、DMol3和Gaussian)和不同計算方法(GGA-BP、VWN-BP、B3LYP和PM6)以及不同基組(TZP, DNP, and 6-31G(d,p)-cosmo)得到之QM/COSMO結果作為PR+COSMOSAC預測純流體之熱力學性質,如臨界性質和蒸氣壓,以及混合流體相行為,如氣-液相平衡和固體溶質於超臨界二氧化碳之溶解度,計算所需資訊得到之準確度,並將PR+COSMOSAC中使用之參數針對每種量子化學計算方法重新優化,可以發現不管使用哪種量子化學計算方法得到之QM/COSMO結果作為PR+COSMOSAC預測純流體之熱力學性質及雙成份氣-液相平衡計算所需資訊得到之結果都很接近,以ADF(GGA-BP/TZP)為例,純物質之蒸氣壓(ALD-P = 0.194)、純物質之昇華壓(ALD-P = 0.647)、純物質之臨界壓力(AARD = 8.00%)、純物質之臨界溫度(AARD = 4.20%)、純物質之臨界體積(AARD = 17.76%)、純物質之沸點(AAD = 14.11K)、雙成份氣-液相平衡(AARD-P = 21.97%、AAD-y = 7.90%),而在預測固體溶質於超臨界二氧化碳之溶解度時,ADF(GGA-BP/TZP) (ALD-x = 0.95)與Gaussian(B3LYP/6-31G(d,p)-cosmo) (ALD-x = 0.85)可能會得到較好之預測結果。
Thermodynamic properties are important information for the design of chemical engineering processes. The Peng-Robinson+COSMOSAC equation of state, denoted as PR+COSMOSAC, has been shown to provide reasonable prediction for thermodynamic properties of pure substances and fluid phase behavior of mixtures without the issue of missing parameters. In COSMO-based models, the molecular interactions are determined from molecular surface charges obtained from the quantum mechanical and COSMO (QM/COSMO) calculations. It has been shown that the accuracy of the COSMOSAC model in predicting fluid phase equilibrium may be affected by the use of quantum chemical computation method in previous literature.
In this work, we investigate the accuracy of the PR+COSMOSAC in predicting thermodynamic properties of pure fluids, such as critical properties and vapor pressures, and fluid phase behavior of mixtures, such as vapor–liquid equilibria and solubility of solid solute in supercritical carbon dioxide, using different QM/COSMO results from different quantum chemical packages (ADF, DMol3, and Gaussian), computational methods (GGA-BP, VWN-BP, B3LYP, and PM6) and basis sets (TZP, DNP, and 6-31G(d,p)-cosmo). The values of parameters in the PR+COSMOSAC were re-optimized for each quantum chemical computation method. It is found that the prediction results of thermodynamic properties of pure fluids and vapor-liquid equilibria are very similar using different QM/COSMO results from different quantum chemical packages. Taking ADF(GGA-BP/TZP) as the example, vapor pressures of pure fluids (ALD-P = 0.194), sublimation pressures of pure fluids (ALD-P = 0.647), critical pressures of pure fluids (AARD = 8.00%), critical temperatures of pure fluids (AARD = 4.20%), critical volumes of pure fluids (AARD = 17.76%), boiling temperatures of pure fluids (AAD = 14.11K), vapor-liquid equilibria (AARD-P = 21.97% and AAD-y = 7.90%). However, the prediction results with ADF(GGA-BP/TZP) (ALD-x = 0.95) and Gaussian(B3LYP/6-31G(d,p)-cosmo) (ALD-x = 0.85) may be more accurate than the other quantum chemical computation methods in the solubility of solid solutes in supercritical carbon dioxide.
1. Mu, T.; Rarey, J.; Gmehling, J., “Performance of COSMO-RS with sigma profiles from different model chemistries”, Ind. Eng. Chem. Res., 46 (20), 6612-6629, 2007.
2. Xiong, R. C.; Sandler, S. I.; Burnett, R. I., “An improvement to COSMO-SAC for predicting thermodynamic properties”, Ind. Eng. Chem. Res., 53 (19), 8265-8278, 2014.
3. Chen, W. L.; Hsieh, C. M.; Yang, L.; Hsu, C. C.; Lin, S. T., “A critical evaluation on the performance of COSMO-SAC models for vapor-liquid and liquid-liquid equilibrium predictions based on different quantum chemical calculations”, Ind. Eng. Chem. Res., 55 (34), 9312-9322, 2016.
4. 徐崇榮; 何佳靜; 王仁俊; 楊智惠; 陳智信; 黃耿祥, 「冷凍真空乾燥」, 科學發展, 70-75, 2012.
5. Jung, J.; Perrut, M., “Particle design using supercritical fluids: literature and patent survey”, J. Supercrit. Fluids, 20 (3), 179-219, 2001.
6. Perrut, M.; Clavier, J.-Y., “Supercritical fluid formulation: process choice and scale-up”, Ind. Eng. Chem. Res., 42 (25), 6375-6383, 2003.
7. Bahrami, M.; Ranjbarian, S., “Production of micro-and nano-composite particles by supercritical carbon dioxide”, J. Supercrit. Fluids, 40 (2), 263-283, 2007.
8. Ross, R. CAS Assigns the 100 Millionth CAS Registry Number® to a Substance Designed to Treat Acute Myeloid Leukemia. 取自http://support.cas.org/news/media-releases/100-millionth-substance.
9. Marrero, J.; Gani, R., “Group-contribution based estimation of pure component properties”, Fluid Phase Equilib., 183, 183-208, 2001.
10. Joback, K. G.; Reid, R. C., “Estimation of pure-component properties from group-contributions”, Chem. Eng. Commun., 57 (1-6), 233-243, 1987.
11. Nannoolal, Y.; Rarey, J.; Ramjugernath, D., “Estimation of pure component properties. Part 2. Estimation of critical property data by group contribution”, Fluid Phase Equilib., 252 (1-2), 1-27, 2007.
12. Marrero-Morejon, J.; Pardillo-Fontdevila, E., “Estimation of pure compound properties using group-interaction contributions”, AIChE J., 45 (3), 615-621, 1999.
13. Klincewicz, K.; Reid, R., “Estimation of critical properties with group contribution methods”, AIChE J., 30 (1), 137-142, 1984.
14. Wen, X.; Qiang, Y., “A new group contribution method for estimating critical properties of organic compounds”, Ind. Eng. Chem. Res., 40 (26), 6245-6250, 2001.
15. Su, C. S., “Prediction of solubilities of solid solutes in carbon dioxide-expanded organic solvents using the predictive Soave-Redlich-Kwong (PSRK) equation of state”, Chem. Eng. Res. Des., 91 (6), 1163-1169, 2013.
16. Holderbaum, T.; Gmehling, J., “PSRK - A group contribution equation of state based on UNIFAC”, Fluid Phase Equilib., 70 (2-3), 251-265, 1991.
17. Tarjomannejad, A., “Prediction of the liquid vapor pressure using the artificial neural network-group contribution method”, Iran J. Chem. Chem. Eng.-Int. Engl. Ed., 34 (4), 97-111, 2015.
18. Peng, D.-Y.; Robinson, D. B., “A new two-constant equation of state”, Ind. Eng. Chem. Fundam., 15 (1), 59-64, 1976.
19. Soave, G., “Equilibrium constants from a modified Redlich-Kwong equation of state”, Chem. Eng. Sci., 27 (6), 1197-1203, 1972.
20. Patel, N. C.; Teja, A. S., “A new cubic equation of state for fluids and fluid mixtures”, Chem. Eng. Sci., 37 (3), 463-473, 1982.
21. Gharagheizi, F.; Eslamimanesh, A.; Mohammadi, A. H.; Richon, D., “Determination of critical properties and acentric factors of pure compounds using the artificial neural network group contribution algorithm”, J. Chem. Eng. Data, 56 (5), 2460-2476, 2011.
22. Gharagheizi, F.; Eslamimanesh, A.; Mohammadi, A. H.; Richon, D., “Artificial neural network modeling of solubilities of 21 commonly used industrial solid compounds in supercritical carbon dioxide”, Ind. Eng. Chem. Res., 50 (1), 221-226, 2011.
23. el Hadj, A. A.; Laidi, M.; Si-Moussa, C.; Hanini, S., “Novel approach for estimating solubility of solid drugs in supercritical carbon dioxide and critical properties using direct and inverse artificial neural network (ANN)”, Neural Comput. Appl., 28 (1), 87-99, 2017.
24. Lin, S. T.; Sandler, S. I., “A priori phase equilibrium prediction from a segment contribution solvation model”, Ind. Eng. Chem. Res., 41 (5), 899-913, 2002.
25. Klamt, A., “Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena”, J. Phys. Chem., 99 (7), 2224-2235, 1995.
26. Wang, S.; Sandler, S. I.; Chen, C. C., “Refinement of COSMO-SAC and the applications”, Ind. Eng. Chem. Res., 46 (22), 7275-7288, 2007.
27. Hsieh, C. M.; Sandler, S. I.; Lin, S. T., “Improvements of COSMO-SAC for vapor-liquid and liquid-liquid equilibrium predictions”, Fluid Phase Equilib., 297 (1), 90-97, 2010.
28. Shimoyama, Y.; Iwai, Y., “Development of activity coefficient model based on COSMO method for prediction of solubilities of solid solutes in supercritical carbon dioxide”, J. Supercrit. Fluids, 50 (3), 210-217, 2009.
29. Sakabe, J.; Uchida, H.; Shimoyama, Y., “Mixed solid phase model using equation of state based on hole-theory for solubility prediction of pharmaceutical compound in supercritical CO2”, J. Supercrit. Fluids, 100, 26-33, 2015.
30. Ishizuka, I.; Sarashina, E.; Arai, Y.; Saito, S., “Group contribution model based on the hole theory”, J. Chem. Eng. Jpn., 13 (2), 90-97, 1980.
31. Hsieh, C. M.; Lin, S. T., “Determination of cubic equation of state parameters for pure fluids from first principle solvation calculations”, AIChE J., 54 (8), 2174-2181, 2008.
32. Hsieh, C. M.; Lin, S. T., “First-principles predictions of vapor-liquid equilibria for pure and mixture fluids from the combined use of cubic equations of state and solvation calculations”, Ind. Eng. Chem. Res., 48 (6), 3197-3205, 2009.
33. Hsieh, C. M.; Lin, S. T., “Prediction of liquid-liquid equilibrium from the Peng-Robinson plus COSMOSAC equation of state”, Chem. Eng. Sci., 65 (6), 1955-1963, 2010.
34. Wang, L. H.; Hsieh, C. M.; Lin, S. T., “Improved prediction of vapor pressure for pure liquids and solids from the PR plus COSMOSAC equation of state”, Ind. Eng. Chem. Res., 54 (41), 10115-10125, 2015.
35. Te Velde, G. t.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J.; Snijders, J. G.; Ziegler, T., “Chemistry with ADF”, Journal of Computational Chemistry, 22 (9), 931-967, 2001.
36. Guerra, C. F.; Snijders, J.; te Velde, G. t.; Baerends, E., “Towards an order-N DFT method”, Theoretical Chemistry Accounts, 99 (6), 391-403, 1998.
37. Philipsen, P.; te Velde, G.; Baerends, E.; Berger, J.; de Boeij, P.; Groeneveld, J.; Kadantsev, E.; Klooster, R.; Kootstra, F.; Romaniello, P., BAND2012, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands. 2012.
38. 陳威霖. 「運用氫鍵特性預測耦合系統之相行為」, 國立臺灣大學, 博士論文, 2017.
39. Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G., “Gaussian 09, revision b. 01, Gaussian”, Inc., Wallingford, CT, 6492, 2010.
40. Cerius2; Accelrys, Inc.: San Diego, CA. 1999.
41. DMol3; Accelrys, “Inc.: San Diego, CA”, 1999.
42. Lin, S. T.; Chang, J.; Wang, S.; Goddard, W. A.; Sandler, S. I., “Prediction of vapor pressures and enthalpies of vaporization using a COSMO solvation model”, J. Phys. Chem. A, 108 (36), 7429-7439, 2004.
43. Mullins, E.; Oldland, R.; Liu, Y.; Wang, S.; Sandler, S. I.; Chen, C.-C.; Zwolak, M.; Seavey, K. C., “Sigma-profile database for using COSMO-based thermodynamic methods”, Ind. Eng. Chem. Res., 45 (12), 4389-4415, 2006.
44. Mullins, E.; Liu, Y.; Ghaderi, A.; Fast, S. D., “Sigma profile database for predicting solid solubility in pure and mixed solvent mixtures for organic pharmacological compounds with COSMO-based thermodynamic methods”, Ind. Eng. Chem. Res., 47 (5), 1707-1725, 2008.
45. 李建億. 「探討分散項之溫度函數與體積參數之修正對PR+COSMOSAC於相平衡預測之影響」, 國立中央大學, 碩士論文, 2017.
46. Wang, L. H.; Lin, S. T., “A predictive method for the solubility of drug in supercritical carbon dioxide”, J. Supercrit. Fluids, 85, 81-88, 2014.