跳到主要內容

簡易檢索 / 詳目顯示

研究生: 郭亮興
Liang-Xing Kuo
論文名稱: 物聯網環境下具可調節性資料傳輸率之家庭多媒體傳輸方法
Media Content Distribution with Adaptive Data Transmission Rate in IoT-Based Home Networks
指導教授: 胡誌麟
Chih-Lin Hu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 51
中文關鍵詞: 物聯網調控方法家用閘道器媒體串流
外文關鍵詞: IoT, Adaptive Function, Gateway, Media Streaming
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於物聯網技術讓現在的科技社會邁向下一個階段,在物聯網環境中,各式功能的感測器以低成本優勢逐漸普及化,經由連上網路讓感測到的資料能傳送到伺服器,但是必須考慮到應用服務方面以及網路傳輸能力,避免在進行對外傳輸過程中因感測器互相爭奪網路資源而導致網路壅塞,使資料到達時間延遲,這情況不僅大幅降低網路效益,連使用者的心情亦受到影響。
    在本論文中,所設計的機制,可以依據不同資料服務類型的權重對不同的裝置進行調整,使得在容量有限的網路資源條件之下,在使用者可接受的範圍之內,減少特定服務和裝置產生的資料量,以維持資料能夠在迅速傳至目的端,不會因為網路
    資源的過度競爭導致資料傳輸延遲更久時間才到達,因此本機制可以善加利用受限制的網路資源,使其發揮最大效益。


    The Internet of Things (IoT) has brought the current digital life society to the next stage. Now, many and different functional types of sensors are developed with small sizes and low cost, which are popularly adopted by different data services in the IoT. Sensing data can be transmitted to the server on the Internet. However, application services and network transmission capabilities must be taken into account to avoid network congestion, while sensors in a home domain contend for limited network resources outward external network domains. The delay time of data delivery not only significantly reduces network efficiency, but also affects the mind of users.
    Thus, this thesis proposes a mechanism, considering different weights of different data service types to adjust, this fashion which enables data traffic in a limited- resource network can be reduced to the minimal-acceptable extent that users can be satisfied. Meanwhile, data can be still transmitted to the destination without uncomfortable delay, so as to keep media playing quality.

    摘要....................i Abstract...............ii 致謝..................iii 目錄...................iv 圖目錄..................v 表目錄.................vi 第一章..................1 1.1前言.................1 1.2研究動機.............2 第二章..................4 2.1家庭網路.............4 2.2 服務品質............5 2.3頻寬分配.............6 2.4公平控制.............8 第三章.................10 3.1 網路模型...........10 3.2 系統架構...........11 3.3 方法機制...........15 第四章.................20 4.1 實作環境...........20 4.2 實驗設計...........22 4.3 實驗方法...........23 4.4實驗結果............25 第五章.................31 參考文獻...............32 附錄...................35

    [1] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A survey on Internet of Things: Architecture, enabling technologies, security and privacy, and applications,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1125–1142, Oct. 2017.
    [2] L. Farhan, S. T. Shukur, A. E. Alissa, M. Alrweg, U. Raza, and R. Kharel, “A survey on the challenges and opportunities of the Internet of Things (IoT),” in Proceedings of International Conference on Sensing Technology, Dec. 2017.
    [3] L. Shu, M. Mukherjee, M. Pecht, N. Crespi, and S. N. Han, “Challenges and research issues of data management in IoT for large-scale petrochemical plants,” IEEE Systems Journal, vol. PP, no. 99, May. 2017.
    [4] R. Bikmetov, M. Y. A. Raja, and T. U. Sane, “Infrastructure and applications of Internet of Things in smart grids: A survey,” in Proceedings of North American Power Symposium, Sep. 2017.
    [5] H. R. Ghorbani and M. H. Ahmadzadegan, “Security challenges in Internet of Things: survey,” in Proceedings of IEEE Conference on Wireless Sensors, Nov. 2017.
    [6] Y. Zhang, R. Yu, S. Xie, W. Yao, Y. Xiao, and M. Guizani, “Home M2M networks: Architectures, standards, and QoS improvement,” IEEE Communications Magazine, vol. 49, no. 4, pp. 44–52, Apr. 2011.
    [7] M. Jerabandi and M. M. Kodabagi, “A review on home automation system,” in Proceedings of International Conference on Smart Technologies for Smart Nations, pp. 1411–1415, Aug. 2017.
    [8] M. Starsinic, “System architecture challenges in the home m2m network,” in Proceedings of IEEE Long Island Systems, Applications and Technology Conference, May. 2010.
    [9] M. Al-Kuwari, A. Ramadan, Y. Ismael, L. Al-Sughair, A. Gastli, and M. Benammar, “Smart-home automation using IoT-based sensing and monitoring platform,” in Proceedings of IEEE International Conference on Compatibility, Power Electronics and Power Engineering, Apr. 2018.
    [10] J. Wang, Z. Zhang, B. Li, S. Lee, and R. S. Sherratt, “An enhanced fall detection system for elderly person monitoring using consumer home networks,” IEEE Transactions on Consumer Electronics, vol. 60, no. 1, pp. 23–29, Feb. 2014.
    [11] K. Wang, G. Cao, D. Meng, W. Chen, and W. Cao, “Automatic fall detection of human in video using combination of features,” in Proceedings of IEEE International Conference on Bioinformatics and Biomedicine, pp. 1228–1233, Dec. 2016.
    [12] C. L. Hu, S. Chen, L. Guo, C. Chootong, and L. Hui, “Home care with IoT support: Architecture design and functionality,” in Proceedings of International Conference on Ubi-media Computing and Workshops, Aug. 2017.
    [13] 3GPP TS 23.107, “Quality of Service (QoS) concept and architecture,” http://www.etsi.org/deliver/etsi_ts/123100_123199/123107/14.00.00_60/ts_123107v140000p.pdf.
    [14] “QoS技術白皮書,” https://doc01.homedo.com/Files/ Documents/PreparationAttachment/ProductDoc/100011342/ 5069961557192678835.pdf.
    [15] K. C. Jeong, J. N. Han, and S. G. Choi, “Qos guarantee method for real time service with packet priority in home gateway,” in Proceedings of International Conference on Advanced Communication Technology, pp. 328–331, Feb. 2014.
    [16] W. J. Hwang, Y. C. Tung, Y. L. Chen, P. Y. Lai, and C. H. Ho, “A novel user-oriented quality of service algorithm for home networks,” IEEE Systems Journal, vol. 12, no. 1, pp. 548–559, Mar. 2018.
    [17] A. Ligata, E. Perenda, and H. Gacanin, “Quality of experience inference for video services in home WiFi networks,” IEEE Communications Magazine, vol. 56, no. 3, pp. 187–193, Mar. 2018.
    [18] X. Huang, T. Yuan, M. Ma, and P. Zhang, “Utility-based network bandwidth allocation in the hybrid SDNs,” in Proceedings of GLOBECOM, Dec. 2017.
    [19] H.-C. Jang, C.-W. Huang, and F.-K. Yeh, “Design a bandwidth allocation framework for SDN based smart home,” in Proceedings of IEEE Information Technology, Electronics and Mobile Communication Conference, Oct. 2016.
    [20] M. Amiri, H. A. Osman, and S. Shirmohammadi, “Game-aware bandwidth allocation for home gateways,” in Proceedings of the 15th Annual Workshop on Network and Systems Support for Games, Jun. 2017.
    [21] Y. Liu and J. Su, “Priority-based bandwidth allocation in heterogeneous wireless network,” in Proceedings of International Conference on Wireless Communications, Networking and Mobile Computing, Sep. 2015.
    [22] K. Zhufang and Y. Guogui, “An adaptive fairness control model in wireless sensor networks,” in Proceedings of International Conference on Electronic Commerce and Business Intelligence, pp. 111–115, Jun. 2009.
    [23] X. Yin, X. Zhou, R. Huang, Y. Fang, and S. Li, “A fairness-aware congestion control scheme in wireless sensor networks,” IEEE Transactions on Vehicular Technology, vol. 58, no. 9, pp. 5225–5234, Nov. 2009.
    [24] S. K. Swain and P. K. Nanda, “Priority based fairness rate control in wireless sensor networks,” in Proceedings of International Conference on Wireless Communications, Signal Processing and Networking, pp. 2206–2210, Mar. 2017.
    [25] Wikipedia, “Qos class identifier,” https://en.wikipedia.org/wiki/QoS Class Identifier.
    [26] “Google YouTube 說明,” https://support.google.com/youtube/answer/2853702?hl=zh-Hant.
    [27] R. Jain, D. Chiu, W. Hawe, “A quantitative measure of fairness and discrimination for resource allocation in shared systems,” Technical Report TR-301, DEC Research Report, Sep. 1984.
    [28] “Node-red,” https://nodered.org/.

    QR CODE
    :::