| 研究生: |
陳慧玲 Hui-ling Chen |
|---|---|
| 論文名稱: |
以擴充RFM模型探討海峽兩岸消費者在網路購物之再購行為研究 An Augmented RFM Model of the Cross-Strait Consumers’ Repurchase Behavior in Online Shopping |
| 指導教授: |
何靖遠
Chin-yuan Ho |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
管理學院 - 資訊管理學系 Department of Information Management |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 再購行為 、賣家再購 、平台再購 、RFM模型 、網路購物 |
| 外文關鍵詞: | Repurchase Behavior, Seller Repurchase, Platform Repurchase, RFM Model, Online Shopping |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
網路購物成長快速早已成為電子商務業者的兵家必爭之地,了解線上消費者的購物行為成為電子商務業者獲利的必要功課。由於增加顧客留住率可以提高獲利,加上開發一位新顧客的成本遠高於留住一位舊顧客的成本,因此若能掌握消費者向同一個賣家再度購買的可能性以及在同一購物平台再購的機率均有助於業者了解消費者行為,進而掌握有價值的顧客,方便推動目標行銷或精準行銷。本研究是以中國最大的電子商務淘寶網以及台灣前兩大之Yahoo!奇摩拍賣及露天拍賣平台為對象,針對網路購物成交最熱絡的商品類別─女裝,進行兩岸電子商務消費者再購行為的比較分析。研究目的在藉由女裝商品的真實交易資料,建構以RFM模型為基礎的賣家再購和平台再購預測模型,並分析兩岸電子商務中消費者再購行為的異同。
再購行為預測模型的預測變數包括最近交易時間間隔、交易次數、交易總金額、平均交易金額,以及買家最近給的評價等五個變數。本研究結果顯示Yahoo!奇摩拍賣的賣家再購比例和平台再購比例在三個平台中均為最高,其次是露天拍賣,淘寶網的再購比例最低。買家的轉換賣家比例由高至低的順序也和平台的再購比例一樣,顯示Yahoo!奇摩拍賣的消費者行為既有最高的賣家忠誠行為,卻也有很高的賣家轉換比例,呈現多忠誠的消費行為。二元羅吉斯迴歸結果顯示,平台的所有預測變數和賣家再購及平台再購均呈現顯著地相關。本研究也以集群分析找出各平台最有價值顧客的特性。本研究發現是基於網路購物平台的真實交易資料,各平台消費者的再購行為及其預測模型,可供平台業者和電子商務賣家作為顧客關係管理和商品行銷的參考。
The fast growing online shopping has turned into a battlefield for many e-commerce (EC) businesses. They must understand their customers’ purchase behavior in order to make a profit. Given the fact that the increase in customer’s retention rate can lead to higher profit and the cost of acquiring a new customer is higher than that of retention of an existing customer, the EC businesses can understand their customers’ behavior and assess customers’ value in order to initiate target marketing or precision marketing by capturing the probability of revisiting the same seller by a customer and repurchase at the same e-marketplace. Taking China’s largest EC platform—Taobao, and Taiwan’s top two platforms—Yahoo Taiwan Auction and Ruten Taiwan Auction as our research targets, and focusing on the most popular trading categories—women’s apparel, we conduct a comparative analysis on the cross-strait EC consumers’ repurchase behavior. The purpose of this research is to establish a RFM-based prediction model of consumers’ seller repurchase and platform repurchase by analyzing the actual transaction data of women’s apparel and to compare the cross-strait EC consumers’ repurchase behavior.
The repurchase behavior prediction model consists of five predictors, including the recency, the freguency, the total amount, the average amount, and the consumer’s last rating. The research findings show that in terms of repurchase rate, Yahoo! is the highest, followed by Ruten, and Taobao is the lowest. Interestingly, the consumer’s seller switching rate in descending order is also Yahoo!, Ruten, and Taobao, which indicates the consumers at Yahoo! exhibit multi-loyalty behavior with both high repurchase rate and high seller switching rate. The Logistic regression shows that all the predictors in the seller repurchase and the platform repurchase prediction model of Yahoo!, Ruten, and Taobao are statistically significant. We also use cluster analysis to identify the characteristics of the most valuable customers at the three different platforms. All of our findings are based on actual transaction data of online shopping web sites, the repurchase behavior of online consumers and its prediction model can be used by EC businesses and platform businesses for consumer relationship management and merchandise sales and marketing.
何靖遠、陳慧玲、廖致淵(2014a),線上消費者平台再購行為的RFM預測模型-以Yahoo!奇摩拍賣女裝為例,數據分析,9(1),頁1-23。
何靖遠、陳慧玲、林暐勝、陳志鴻、刑哲源、林旭敏(2014b),以實際交易資料探討露天拍賣線上消費者平台再購行為之相關因素,數據分析,9(5),已接受。
呂彥德(2012),「收藏人氣對線上賣家服務品質與購買人數關係之中介影響-以淘寶網女裝店舖為例」,國立中央大學,碩士論文。
林暐勝(2012),「線上消費者購買行為之RFM分析 – 以”露天拍賣"的流行女裝為例」,國立中央大學,碩士論文。
廖致淵(2012),「 線上消費者再購行為之預測- 以Yahoo!奇摩拍賣女裝上衣為例」,國立中央大學,碩士論文。
Agresti, A. (1996), An Introduction to Categorical Data Analysis. John Wiley and Sons, Inc.
Ariely, D. and Norton, M. I. (2007), “How actions create - not just reveal - preferences,” TRENDS in Cognitive Sciences, 12(1), 13-16.
Anderson, R. E. and Srinivasan, S. S. (2003), “E-satisfaction and e-loyalty: a contingency framework,” Psychology and Marketing, 20(2), 123-138.
Ba, S. and Pavlou, P. A. (2002), “Evidence of the effect of trust in electronic markets: Price premiums and buyer behavior,” MIS Quarterly, 26(3), 243-268.
Bauer, C. L. (1988), “A direct mail customer purchase model,” Journal of Direct Marketing, 2(3), 16-24.
Bapna, R., Goes, P. and Gupta, A. (2001), “Insights and analyses of online auctions,” Communications of the ACM, 44(11), 42-50.
Beam, C., and Segev, A., (1998), “Auctions on the Internet: a field study,” Unpublished Manuscript, Haas School of Business University of California, Berkeley.
Benlian, A, Titah, R, Thomas, H., (2012), “Differential effects of provider recommendations and consumer reviews in e-commerce transactions: an experimental study,” Journal of Management Information Systems, 29(1), 237-272.
Brian F. B., Kimberly A. N. and Colin M. V. (2003), “Innovativeness and variety of Internet shopping,” Internet Research, 13(3), 156-169.
Brynjolfsson, E. and Smith, M.D. (2000),” Frictionless commerce? a comparison of internet and conventional retailers,” Management Science, 46(4), 563-585.
Buckinx, W., & Van den Poel, D. (2005). Customer base analysis: partial defection of behaviourally loyal clients in a non-contractual FMCG retail setting. European Journal of Operational Research, 164(1), 252-268.
Caruana, A. (2002), “Service loyalty: the effects of service quality and the mediating role of customer satisfaction,” European Journal of Marketing, 36(7/8), 811-828.
Chiou, J. S., Wu, L. Y. and Sung, Y. P. (2009), “Buyer satisfaction and loyalty intention in online auctions,” Journal of Service Management, 20(5), 521-543.
Chiu, C. Y., Lin, Z. P., Chen P. C. and Kuo, I. T. (2009), “Applying RFM model to evaluate the e-loyalty for information-based wsebsite,” International Journal of Electronic Business Management, 7(4), 278-285.
Cullinan, G. J. (1978), Picking them by their batting averages: recency-requency-monetary method of control-ling circulation, manual release, New York: Direct Mail/Marketing Association.
Engel, J.F., Kollat, D.T. and Blackwell, R.D. (2001), Consumer Behavior, 7th ed, New York; The Dryden Press.
Fader, P. S., Hardie, B. G. S., & Lee, K. L. (2005). " Counting your customers the easy way: an alternative to the Pareto/NBD Model.” Marketing Science, 275-284.
Fang, Y., Qureshi, I., Sun, H., McCole, P. Ramsey, E. and Lim, K.H. (2014), “Trust, satisfaction, and online repurchase intention: the moderating role of perceived effectiveness of e-commerce institutional mechanisms,” MIS Quarterly, 38(2), 407-427.
Gilkeson, J. H. and Reynolds, K. (2003), “Determinants of internet auction success and closing price: an exploratory study,” Psychology & Marketing, 20(6), 537-566.
Gommans, M., Krishman, K. S. and Scheffold, K. B. (2001), “From brand loyalty to e-loyalty: a conceptual framework,” Journal of Economic and Social Research, 3(1), 43-59.
Goodman, J. (1992), “Leveraging the customer database to your com-petitive advantage,” Direct Marketing, 55(8), 26–27.
Gregg, D. G. and Walczak, S. (2008), “Dressing your online auction business for Success: An experiment comparing two eBay businesses,” MIS Quarterly, 32(3), 653-670.
Hair, J. F., Black, W. C., Babin, B. J. and Anderson, R. E. (2010), Multivariate data analysis, New Jersey: PEARSON.
Hayne, S. C., Smith, C. A. P. and Vijayasarathy, L. R. (2003), “Who wins on eBay? an analysis of bidders and their bid behaviours,” Electronic Markets, 13(4), 282-293.
Heider, F. (1958), The psychology of interpersonal relations, New Jersey: Wiley.
Hosmer, D. and Stanley, L. (1989), Applied Logistic Regression. John Wiley and Sons, Inc.
Hughes, A. M. (2005). Strategic database marketing: McGraw-Hill Companies.
Jiang, Z., Chan, J., Tan, B. and Chua, W. (2010), “Effects of interactivity on website involvement and purchase intention,” Journal of the Association for Information Systems, 11(1), 34-59.
Kamakura, W. A., Mittal, V., de Rosa, F. and Mazzon, J. A. (2002), “Assessing the service-profit chain,” Marketing Science, 21(3), 294–317.
Kim, D.J. (2012), “An investigation of the effect of online consumer trust on expectation, satisfaction, and post-expectation,” Information Systems & e-Business Management, 10, 219-240.
Kim, D. J., Ferrin, D. L. and Rao, H. R. (2009), “Trust and satisfaction, two stepping stones for successful e-commerce relationships: a longitudinal exploration,” Information Systems Research, 20(2), 237-257.
Koo, D. M. (2006), “The fundamental reasons of e-consumers loyalty to an online store,” Electronic Commerce Research and Applications, 5(2), 117-130.
Kuttner, R. (1998), “The net: a market too perfect for profits,” Business Week, 3577, 20.
Li, X., Hitt, L.M., and Zhang, Z.J. (2011), “Product reviews and competition in markets for repeat purchase products,” Journal of Management Information Systems, 27(4), 9-41.
Malhotra, N. K., Kim, S. S. and Agarwal, J. (2004), “Internet users’ information privacy concerns (IUIPC): The construct, the scale, and a causal model,” Information Systems Research, 15(4), 336-355.
Marcus, C. (1998), “A practical yet meaningful approach to customer segmentation,” Journal of consumer marketing, 15(5), 494-504.
Menard, S. (1995), Applied Logistic Regression Analysis. Sage Publications.Series: Quantitative Applications in the Social Sciences, No. 106.
Mittal, V. and Kamakura, W. A. (2001), “Satisfaction, repurchase intent, and repurchase behavior: Investigating the moderating effect of customer characteristics,” Journal of Marketing Research, 38(1), 131-142.
Nath R., Akmanligil, M., Hjelm, K., Sakaguchi, T., & Schultz, M.(1998), “Electronic commerce and the Internet: Issues, problems, and perspectives,” International Journal of Information Management, 18(2), 91-101.
Neal, W. D. (1999), “Satisfaction is nice but value drives loyalty - the most satisfied customer may not necessarily be the most loyal,” Marketing Research, 11(1), 21-23.
Oliver, R. L. (1997), Customer satisfaction: a behavioral perspective on the consumer, New York: McGraw-Hill.
Oliver, R. L. (1999), “Whence consumer loyalty?” Journal of Marketing, 63(4), 33-44.
Pavlou, P. A., Liang, H. and Xue, Y. (2007), “Understanding and mitigating uncertainty in online exchange relationships: a principal-agent perspective,” MIS Quarterly, 31(1), 105-136.
Pfeifer, P. (2005), “The optimal ratio of acquisition and retention costs,” Journal of Targeting, Measurement and Analysis for Marketing, 13(2), 179-188.
Posselt, T. and Gerstner, E. (2005), “Pre-sales vs. post-sale e-satisfaction: impact on repurchase intention and overall satisfaction,” Journal of Interactive Marketing, 19(4), 35-47.
Qu, Z., Zhang, H. and Li, H. (2008), “Determinants of online merchant rating: content analysis of consumer comments about Yahoo merchants,” Decision Support Systems, 46(1), 440-449.
Reichheld, F. F.(1996), “Learning from customer defections,” Harvard Business Review, 74(2), 56-67.
Reichheld, F. F. and Schefter, P. (2000), “E-loyalty: Your secret weapon on the Web,” Harvard Business Review, July-August, 105-113.
Shankar, V. S., Smith, A. K. and Rangaswamy, A. (2003), “Customer satisfaction and loyalty in online and offline environments,” International Journal of Research in Marketing, 20(2), 153-175.
Sheth, J.N., Mittal, B. and Newman, B. (1999), Customer behavior: consumer behavior and beyond, Texas: Dryden Press.
Srinivasan, S. S., Anderson, R. and Ponnavolu, K. (2002), “Customer loyalty in e-commerce: an exploration of its antecedents and consequences,” Journal of Retailing, 78(1), 41-50.
Tabachnick , B. & Linda F. (1996), Using Multivariate Statistics, Third edition. Harper Collins.
Van Slyke, C., Shim, J. T., Johnson, R. and Jiang, J. J. (2006), “Concern for information privacy and online consumer purchasing,” Journal of the Association for Information Systems, 7(6), 415-443.
Wei, J. T., Lin, S. Y. and Wu, H. H. (2010), “A review of the application of RFM model,” African Journal of Business Management, 4(19), 4199-4206.
Weinberg, B. D. and Davis, L. (2005), “Exploring the WOW in online-auction feedback,” Journal of Business Research, 58(11), 1609-1621.
Wu, L. L. and Lin, J. Y. (2006), “The quality of consumers’ decision-making in the environment of e-commerce,” Psychology and Marketing, 23(4), 297-311.
Yang, Z., & Peterson, R. T.(2004), “Customer perceived value, satisfaction, and loyalty: The role of switching costs,” Psychology & Marketing, 21(10), 799-22.
Yen, C. H. and Lu, H. P. (2008a), “Factors influencing online auction repurchase intention,” Internet Research, 18(1), 7-25.
中國互聯網絡信息中心(CNNIC)(2014),2014年7月6日取自http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/hlwtjbg/201403/P020140305346585959798.pdf。
艾瑞咨詢集團(iResearch)(2013年11月4日)。2013Q3中國網路購物市場數據。2014年7月5日取自http://www.iresearch.com.cn/View/217734.html
艾瑞咨詢集團(iResearch)(2014年6月25日)。網路購物使用者習慣逐漸深化,女性仍然是網購的主力。2014年7月5日取自http://www.iresearch.com.cn/View/233248.html
創市際市場研究顧問(2011年12月1日)。創市際2011年10月份月刊報告書。取自http://news.ixresearch.com/?p=4806。
財團法人台灣網路資訊中心(2011年 1 月)。2011 年臺灣寬頻網路使用調查報告【新聞群組】。2011 年 3 月 15 日取自http://www.twnic.net.tw/download/200307/1101d.pdf
團法人台灣網路資訊中心(2014年 7 月)。2013年台灣無線網路使用調查報告,取自http://statistics.twnic.net.tw/cgi/login.cgi
資策會(FIND)(2012年11月13日)。2012年台灣電子商務B2C網路商店調查報告。2014年7月6日取自http://www.digitimes.com.tw/tw/dt/n/shwnws.asp?CnlID=10&cat=35&id=0000311367_T0K2IX977MRJAV6U3NZ3U&ct=1。