| 研究生: |
李豐州 Fong-Jhou Li |
|---|---|
| 論文名稱: |
H∞模糊系統控制-多凸面法 H∞ Stabilization Analysis - Multiconvexity Approach |
| 指導教授: |
羅吉昌
Ji-Chang Lo |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 共同P解 、線性矩陣不等式 、多凸面 、李亞普諾夫方程式 、狀態回饋控制 、非共同P解 、T-S模糊模型 |
| 外文關鍵詞: | multiconvexity, Takagi-Sugeno(T-S), Lyapunov function, LMI, Common P, Non-common P, state feedback control |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文是以狀態回饋控制研究模糊系統(fuzzy systems) 的穩定性問題,本論文將分為兩部分來進行討論,第一部份先推導滿足 Lyapunov 穩定的檢測條件,第二部分考慮干擾的影響,推導出滿足 H∞ 穩定的檢測條件 。
本論文將在 LMI(Linear Matrix Inequality) 中探討一個新的降低保守性穩定度檢測條件,連續及離散模糊系統將由統一的方法來論述。藉由建立在李亞普諾夫函數 (Lyapunov function)及結合多凸面 (multi-convexity) 的概念,我們可降低一般普遍存在於共同P矩陣 (common P) 論述上的保守性,然而本論文是建立在非共同P解 (non-common P) 的論述上,因此具有更寬鬆的求解條件。
本論文在控制的部分是研究一非線性系統受到狀態回饋控制器控制 , 首先將此非線性系統轉換成 Takagi-Sugeno(T-S) 模糊系統 ,
以提供一套系統化的研究方法 , 研究非線性系統的穩定性分析問題 。 針對 T-S 模糊模型 ,
本論文根據非平行分散式補償器 (Non PDC) 的概念設計狀態回饋控制器 ,
再以 Lyapunov 定理及多凸面的概念 , 求得滿足系統穩定的條件 。
A new stabilization condition guaranteeing H∞
performance of T-S fuzzy control systems is studied in this paper, continuous- and discrete-time fuzzy control systems treated in a unified manner.
A premise-dependent Lyapunov function is chosen and the quadratic property of the premise
(i.e. grade of membership, μ) is considered in the stabilization analysis.
The stabilization analysis is performed on the basis of Lyapunov theory and multiconvexity,
here stated using LMI to profit from the advantage of convex optimization.
It is shown, via theoretical analysis and numerical simulations, that our results are much
less conservative than existing reports in the literature.
[1] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications
to modelling and control,” IEEE Trans. Syst., Man, Cybern., vol. 15, no. 1, pp.
116–132, Jan. 1985.
[2] K. Tanaka and H. Wang, Fuzzy Control Systems Design: A Linear Matrix In-
equality Approach. New York, NY: John Wiley & Sons, Inc., 2001.
[3] H. Ying, “Sufficient conditions on uniform approximation of multivariate functions
by Takagi-Sugeno fuzzy systems with linear rule consequent,” IEEE Trans. Syst.,
Man, Cybern. A: Systems and Humans, vol. 28, no. 4, pp. 515–520, Apr. 1998.
[4] H. Wang, J. Li, D. Niemann, and K. Tanaka, “T-S fuzzy model with linear rule
consequence and PDC controller: a universal framework for nonlinear control
systems,” in Proc. of 18th Int’l Conf. of the North American Fuzzy Information
Processing Society, 2000.
[5] K. Tanaka, T. Taniguchi, and H. Wang, “Generalized Takagi-Sugeno fuzzy systems:
rule reduction and robust control,” in Proc. of 7th IEEE Conf. on Fuzzy
Systems, 2000.
[6] T. Taniguchi, K. Tanaka, H. Ohatake, and H. Wang, “Model construction, rule
reduction and robust compensation for generalized form of Takagi-Sugeno fuzzy
systems,” IEEE Trans. Fuzzy Systems, vol. 9, no. 4, pp. 525–538, Aug. 2001.
[7] J. Lo and Y. Lin, “Robust H1 fuzzy control via dynamic output feedback for
discrete-time systems,” in The 2002 IEEE World Congress on Computational In-
telligence, vol. 3, Honolulu, HI, May 2002, pp. 633–638.
[8] J. Lo and M. Lin, “Observer-based robust H1 control for fuzzy systems using
two-step procedure,” IEEE Trans. Fuzzy Systems, vol. 12, no. 3, pp. 350–359,
June 2004.
[9] H. Wang, K. Tanaka, and M. Griffin, “An approach to fuzzy control of nonlinear
systems: stability and design issues,” IEEE Trans. Fuzzy Systems, vol. 4, no. 1,
pp. 14–23, Feb. 1996.
[10] K. Tanaka, T. Ikeda, and H.Wang, “Fuzzy regulators and fuzzy observers: relaxed
stability conditions and LMI-based designs,” IEEE Trans. Fuzzy Systems, vol. 6,
no. 2, pp. 250–265, May 1998.
[11] E. Kim and H. Lee, “New approaches to relaxed quadratic stability condition of
fuzzy control systems,” IEEE Trans. Fuzzy Systems, vol. 8, no. 5, pp. 523–534,
Oct. 2000.
[12] Y. Blanco, W. Perruquetti, and P. Borne, “Relaxed stability conditions for Takagi-
Sugeno’s fuzzy models,” in Proc. 9th IEEE Conf. Fuzzy Syst., vol. 2, San Antonio,
TX., 2000, pp. 539–543.
[13] H. Tuan, P. Apkarian, T. Narikiyo, and Y. Yamamoto, “Parameterized linear
matrix inequality techniques in fuzzy control system design,” IEEE Trans. Fuzzy
Systems, vol. 9, no. 2, pp. 324–332, Apr. 2001.
[14] M. Johansson, A. Rantzer, and K.-E. Arzen, “Piecewise quadratic stability of
fuzzy systems,” IEEE Trans. Fuzzy Systems, vol. 7, no. 6, pp. 713–722, Dec. 1999.
[15] K. Kiriakidis, “Robust stabilization of the Takagi-Sugeno fuzzy model via bilinear
matrix inequalities,” IEEE Trans. Fuzzy Systems, vol. 9, no. 2, pp. 269–277, Apr.
2001.
[16] M. Chadli, D. Maquin, and J. Ragot, “Relaxed stability conditions for Takagi-
Sugeno fuzzy systems,” in Proc. 2000 IEEE International Conference on Systems,
Man, and Cybernetics, vol. 5, 2000, pp. 3514–3519.
[17] K. Tanaka, T. Hori, and H. Wang, “A fuzzy Lyapunov approach to fuzzy control
system design,” in American Control Conference, vol. 6, Arlington, VA, 2001, pp.
4790 –4795.
[18] ——, “A dual design problem via multiple Lyapunov functions ,” in Proc. 10th
IEEE Conf. Fuzzy Syst., vol. 1, Melbourne, Australia, 2001, pp. 388 –391.
[19] G. Feng and J. Ma, “Quadratic stabilization of uncertain discrete-time fuzzy dynamic
system,” IEEE Trans. Circuits and Syst. I: Fundamental Theory and Ap-
plications, vol. 48, no. 11, pp. 1137–1344, Nov. 2001.
[20] S. Cao, N. Rees, and G. Feng, “H1 control of nonlinear continuous-time systems
based on dynamical fuzzy models,” Int’l. Journal on Systems Science, vol. 27,
no. 9, pp. 821–830, 1996.
[21] Y. Morere, T. Guerra, L. Vermeiren, and A. Kamoun, “Non quadratic stability
and stabilization of discrete fuzzy models,” in IEEE-ACIDCA Conference, 1999,
reprint from authors.
[22] T. Guerra and W. Perruquetti, “Non quadratic stabilization of discrete Takagi
Sugeno fuzzy models,” in FUZZY-IEEE2001 Conference, vol. 1, Melbourne, AU,
2001, pp. 1271–1274.
[23] T. Guerra and L. Vermeiren, “Conditions for non quadratic stabilization of discrete
fuzzy models,” in 2001 IFAC Conference, 2001.
[24] K. Tanaka, T. Hori, and H. Wang, “A multiple Lyapunov Function Approach
to Stabilization of Fuzzy Control Systems,” IEEE Trans. Fuzzy Systems, vol. 11,
no. 4, pp. 582–589, Aug. 2003.
[25] P. Apkarian and H. Tuan, “Parameterized LMIs in control theory,” SJAM J.
Control Optim., vol. 38, no. 4, pp. 1241–1264, 2000.
[26] B. Rhee and S. Won, “A new fuzzy Lyapunov function approach for a Takagisugeno
fuzzy control system design,” Fuzzy Set and Systems, vol. 157, pp. 1211–
1228, 2006.
[27] H. K. Khalil, Nonlinear Systems. Upper Saddle River, Nj: Prentice-Hall., 2002.
[28] J.-J. E.Slotine and W. Li, APPLIED NONLINEAR CONTROL. Englewood
Cliffs, NJ: Prentice-Hall, 1991.
[29] M. Teixeira, E. Assuncao, and R. Avellar, “On relaxed LMI-based design for fuzzy
regulators and fuzzy observers,” IEEE Trans. Fuzzy Systems, vol. 11, no. 5, pp.
613–623, 2003.
[30] X. Liu and Q. Zhang, “Approaches to Quadratic Stability Conditions and H1
Control Design for T-S Fuzzy Systems,” in IEEE Trans. on Fuzzy Systems, vol. 11,
no. 6, Dec. 2003, pp. 830–839.
[31] H. Gao, Z. Wang, and C. Wang, “Improved H1 control of discrete-time fuzzy
systems: a cone complementarity linearization approach,” in Information Sciences
of ELSEVIER, vol. 175, 2005, pp. 57–77.
[32] Y. Cao and P. Frank, “Robust H1 disturbance attenuation for a class of uncertain
discrete-time fuzzy systems,” IEEE Trans. Fuzzy Systems, vol. 8, no. 4, pp. 406–
415, Aug. 2000.