跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李豐州
Fong-Jhou Li
論文名稱: H∞模糊系統控制-多凸面法
H∞ Stabilization Analysis - Multiconvexity Approach
指導教授: 羅吉昌
Ji-Chang Lo
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 94
語文別: 中文
論文頁數: 75
中文關鍵詞: 共同P解線性矩陣不等式多凸面李亞普諾夫方程式狀態回饋控制非共同P解T-S模糊模型
外文關鍵詞: multiconvexity, Takagi-Sugeno(T-S), Lyapunov function, LMI, Common P, Non-common P, state feedback control
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文是以狀態回饋控制研究模糊系統(fuzzy systems) 的穩定性問題,本論文將分為兩部分來進行討論,第一部份先推導滿足 Lyapunov 穩定的檢測條件,第二部分考慮干擾的影響,推導出滿足 H∞ 穩定的檢測條件 。
    本論文將在 LMI(Linear Matrix Inequality) 中探討一個新的降低保守性穩定度檢測條件,連續及離散模糊系統將由統一的方法來論述。藉由建立在李亞普諾夫函數 (Lyapunov function)及結合多凸面 (multi-convexity) 的概念,我們可降低一般普遍存在於共同P矩陣 (common P) 論述上的保守性,然而本論文是建立在非共同P解 (non-common P) 的論述上,因此具有更寬鬆的求解條件。
    本論文在控制的部分是研究一非線性系統受到狀態回饋控制器控制 , 首先將此非線性系統轉換成 Takagi-Sugeno(T-S) 模糊系統 ,
    以提供一套系統化的研究方法 , 研究非線性系統的穩定性分析問題 。 針對 T-S 模糊模型 ,
    本論文根據非平行分散式補償器 (Non PDC) 的概念設計狀態回饋控制器 ,
    再以 Lyapunov 定理及多凸面的概念 , 求得滿足系統穩定的條件 。


    A new stabilization condition guaranteeing H∞
    performance of T-S fuzzy control systems is studied in this paper, continuous- and discrete-time fuzzy control systems treated in a unified manner.
    A premise-dependent Lyapunov function is chosen and the quadratic property of the premise
    (i.e. grade of membership, μ) is considered in the stabilization analysis.
    The stabilization analysis is performed on the basis of Lyapunov theory and multiconvexity,
    here stated using LMI to profit from the advantage of convex optimization.
    It is shown, via theoretical analysis and numerical simulations, that our results are much
    less conservative than existing reports in the literature.

    第一章 簡介 1 1.1文獻回顧 1 1.2研究動機 2 1.3論文結構 3 1.4符號標記 3 1.5預備定理 4 1.6線積分法 5 第一部份:李亞普諾夫穩定(Lyapunov Theorem) 8 第二章 系統架構與穩定條件 8 2.1系統架構 8 2.2穩定條件 9 第三章 狀態回饋控制器設計 25 3.1系統架構 25 3.2狀態回饋控制器 26 3.2.1連續系統 26 3.2.2離散系統 31 第四章 電腦模擬 34 4.1連續系統 34 4.1.1系統架構 34 4.1.2求解 35 4.2離散系統 39 4.2.1系挺架構 39 4.2.2求解 39 第二部分: H∞定理 43 第五章 系統架構與H∞定理 43 5.1系統架構 43 5.2狀態回饋控制器 44 5.3檢測條件 45 5.3.1連續系統 45 5.3.2離散系統 57 第六章 電腦模擬 63 6.1連續系統 63 6.1.1系統架構 63 6.1.2求解 64 6.2離散系統 68 6.2.2系統架構 68 6.2.2求解 69 第七章 結論與未來方向 71 7.1總結 71 7.2未來研究方向 71 參考文獻 72

    [1] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications
    to modelling and control,” IEEE Trans. Syst., Man, Cybern., vol. 15, no. 1, pp.
    116–132, Jan. 1985.
    [2] K. Tanaka and H. Wang, Fuzzy Control Systems Design: A Linear Matrix In-
    equality Approach. New York, NY: John Wiley & Sons, Inc., 2001.
    [3] H. Ying, “Sufficient conditions on uniform approximation of multivariate functions
    by Takagi-Sugeno fuzzy systems with linear rule consequent,” IEEE Trans. Syst.,
    Man, Cybern. A: Systems and Humans, vol. 28, no. 4, pp. 515–520, Apr. 1998.
    [4] H. Wang, J. Li, D. Niemann, and K. Tanaka, “T-S fuzzy model with linear rule
    consequence and PDC controller: a universal framework for nonlinear control
    systems,” in Proc. of 18th Int’l Conf. of the North American Fuzzy Information
    Processing Society, 2000.
    [5] K. Tanaka, T. Taniguchi, and H. Wang, “Generalized Takagi-Sugeno fuzzy systems:
    rule reduction and robust control,” in Proc. of 7th IEEE Conf. on Fuzzy
    Systems, 2000.
    [6] T. Taniguchi, K. Tanaka, H. Ohatake, and H. Wang, “Model construction, rule
    reduction and robust compensation for generalized form of Takagi-Sugeno fuzzy
    systems,” IEEE Trans. Fuzzy Systems, vol. 9, no. 4, pp. 525–538, Aug. 2001.
    [7] J. Lo and Y. Lin, “Robust H1 fuzzy control via dynamic output feedback for
    discrete-time systems,” in The 2002 IEEE World Congress on Computational In-
    telligence, vol. 3, Honolulu, HI, May 2002, pp. 633–638.
    [8] J. Lo and M. Lin, “Observer-based robust H1 control for fuzzy systems using
    two-step procedure,” IEEE Trans. Fuzzy Systems, vol. 12, no. 3, pp. 350–359,
    June 2004.
    [9] H. Wang, K. Tanaka, and M. Griffin, “An approach to fuzzy control of nonlinear
    systems: stability and design issues,” IEEE Trans. Fuzzy Systems, vol. 4, no. 1,
    pp. 14–23, Feb. 1996.
    [10] K. Tanaka, T. Ikeda, and H.Wang, “Fuzzy regulators and fuzzy observers: relaxed
    stability conditions and LMI-based designs,” IEEE Trans. Fuzzy Systems, vol. 6,
    no. 2, pp. 250–265, May 1998.
    [11] E. Kim and H. Lee, “New approaches to relaxed quadratic stability condition of
    fuzzy control systems,” IEEE Trans. Fuzzy Systems, vol. 8, no. 5, pp. 523–534,
    Oct. 2000.
    [12] Y. Blanco, W. Perruquetti, and P. Borne, “Relaxed stability conditions for Takagi-
    Sugeno’s fuzzy models,” in Proc. 9th IEEE Conf. Fuzzy Syst., vol. 2, San Antonio,
    TX., 2000, pp. 539–543.
    [13] H. Tuan, P. Apkarian, T. Narikiyo, and Y. Yamamoto, “Parameterized linear
    matrix inequality techniques in fuzzy control system design,” IEEE Trans. Fuzzy
    Systems, vol. 9, no. 2, pp. 324–332, Apr. 2001.
    [14] M. Johansson, A. Rantzer, and K.-E. Arzen, “Piecewise quadratic stability of
    fuzzy systems,” IEEE Trans. Fuzzy Systems, vol. 7, no. 6, pp. 713–722, Dec. 1999.
    [15] K. Kiriakidis, “Robust stabilization of the Takagi-Sugeno fuzzy model via bilinear
    matrix inequalities,” IEEE Trans. Fuzzy Systems, vol. 9, no. 2, pp. 269–277, Apr.
    2001.
    [16] M. Chadli, D. Maquin, and J. Ragot, “Relaxed stability conditions for Takagi-
    Sugeno fuzzy systems,” in Proc. 2000 IEEE International Conference on Systems,
    Man, and Cybernetics, vol. 5, 2000, pp. 3514–3519.
    [17] K. Tanaka, T. Hori, and H. Wang, “A fuzzy Lyapunov approach to fuzzy control
    system design,” in American Control Conference, vol. 6, Arlington, VA, 2001, pp.
    4790 –4795.
    [18] ——, “A dual design problem via multiple Lyapunov functions ,” in Proc. 10th
    IEEE Conf. Fuzzy Syst., vol. 1, Melbourne, Australia, 2001, pp. 388 –391.
    [19] G. Feng and J. Ma, “Quadratic stabilization of uncertain discrete-time fuzzy dynamic
    system,” IEEE Trans. Circuits and Syst. I: Fundamental Theory and Ap-
    plications, vol. 48, no. 11, pp. 1137–1344, Nov. 2001.
    [20] S. Cao, N. Rees, and G. Feng, “H1 control of nonlinear continuous-time systems
    based on dynamical fuzzy models,” Int’l. Journal on Systems Science, vol. 27,
    no. 9, pp. 821–830, 1996.
    [21] Y. Morere, T. Guerra, L. Vermeiren, and A. Kamoun, “Non quadratic stability
    and stabilization of discrete fuzzy models,” in IEEE-ACIDCA Conference, 1999,
    reprint from authors.
    [22] T. Guerra and W. Perruquetti, “Non quadratic stabilization of discrete Takagi
    Sugeno fuzzy models,” in FUZZY-IEEE2001 Conference, vol. 1, Melbourne, AU,
    2001, pp. 1271–1274.
    [23] T. Guerra and L. Vermeiren, “Conditions for non quadratic stabilization of discrete
    fuzzy models,” in 2001 IFAC Conference, 2001.
    [24] K. Tanaka, T. Hori, and H. Wang, “A multiple Lyapunov Function Approach
    to Stabilization of Fuzzy Control Systems,” IEEE Trans. Fuzzy Systems, vol. 11,
    no. 4, pp. 582–589, Aug. 2003.
    [25] P. Apkarian and H. Tuan, “Parameterized LMIs in control theory,” SJAM J.
    Control Optim., vol. 38, no. 4, pp. 1241–1264, 2000.
    [26] B. Rhee and S. Won, “A new fuzzy Lyapunov function approach for a Takagisugeno
    fuzzy control system design,” Fuzzy Set and Systems, vol. 157, pp. 1211–
    1228, 2006.
    [27] H. K. Khalil, Nonlinear Systems. Upper Saddle River, Nj: Prentice-Hall., 2002.
    [28] J.-J. E.Slotine and W. Li, APPLIED NONLINEAR CONTROL. Englewood
    Cliffs, NJ: Prentice-Hall, 1991.
    [29] M. Teixeira, E. Assuncao, and R. Avellar, “On relaxed LMI-based design for fuzzy
    regulators and fuzzy observers,” IEEE Trans. Fuzzy Systems, vol. 11, no. 5, pp.
    613–623, 2003.
    [30] X. Liu and Q. Zhang, “Approaches to Quadratic Stability Conditions and H1
    Control Design for T-S Fuzzy Systems,” in IEEE Trans. on Fuzzy Systems, vol. 11,
    no. 6, Dec. 2003, pp. 830–839.
    [31] H. Gao, Z. Wang, and C. Wang, “Improved H1 control of discrete-time fuzzy
    systems: a cone complementarity linearization approach,” in Information Sciences
    of ELSEVIER, vol. 175, 2005, pp. 57–77.
    [32] Y. Cao and P. Frank, “Robust H1 disturbance attenuation for a class of uncertain
    discrete-time fuzzy systems,” IEEE Trans. Fuzzy Systems, vol. 8, no. 4, pp. 406–
    415, Aug. 2000.

    QR CODE
    :::