跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃鼎育
Ding-yu Huang
論文名稱: IV族半導體基板鈍化層研究
Research on the Passivation of IV Group Semiconductor Substrates
指導教授: 陳昇暉
Sheng-hui Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 79
中文關鍵詞: 鈍化五氧化二鉭氮化矽三氧化二鋁二氧化鈦載子生命週期電性分析
外文關鍵詞: passivation, Ta2O5, SiNx, Al2O3, TiO2, carrier lifetime, electric properties analysis
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究可以分為兩個部份來討論,其一是矽基板與鍺基板上鈍化層的分析,第二是比較分析兩種不同基板上鈍化效果。利用沉積四種不同鈍化層薄膜,分別是SiO2/SiNx、Ta2O5、TiO2、Al2O3,鍍製在IV族基板上,期望藉此改善太陽能電池基板的載子表面復合。鈍化層的分析主要分成電性分析以及薄膜成分的分析,觀察對不同鈍化薄膜於不同基板鈍化效果。在電性分析上量測少數過量載子生命週期值與電流電壓特性曲線,在成份分析上量測X-ray光電子能譜儀。
    根據本實驗的分析結果,在矽基板上SiO2/SiNx堆疊結構有最好的鈍化效果,少數過量載子生命週期值為127.97 μs,樣品漏電流為5.8×10-8 A(0.5V),是四種鈍化層中表現最佳。而在鍺基板上則是Ta2O5薄膜具有最好的鈍化效果,少數過量載子生命週期值為9.41μs,樣品漏電流值為9.77×10-5 A(0.5V),亦是四種鈍化材料中表現最佳。


    There are two main parts in this research. One is the analysis of the passivation layers on the silicon substrates or germanium substrates. Another one is the compare of the passivation effect on the different substrates (crystalline silicon and germanium). Four different materials were used to be the passivation layers of the group IV semiconductor substrates to reduce the recombination of the substrate surface. They are SiO2/SiNx, Ta2O5, TiO2 and Al2O3, the electrical and stoichiometric properties of the passivation layers are including their leakage current, excess minority carrier lifetime and atomc content ratio on the group IV semiconductor substrates.
    According to the experimental results, the SiO2/SiNx layers on the silicon substrate, achieved the best passivation effect. The minority lifetime is 127.97 μs, and the leakage current is 5.8×10-8 A (0.5 V). And the Ta2O5 layer on the germanium substrates also achieved the best passivation effect. The minority lifetime is 9.41μs and the leakage current is 9.77×10-5 A (0.5 V).

    目錄 第一章 緒論 1 1.1 太陽能電池簡介與分類 1 1.2 太陽能電池IV族基板及其鈍化介紹 4 1.3 研究動機 5 1.4 論文架構 6 第二章 文獻回顧 7 第三章 基本理論 10 3.1 IV族基板內傳輸載子的復合(Recombination)機制 10 3.1.1輻射復合(Radiative recombination) 11 3.1.2歐傑復合(Auger recombination) 13 3.1.3 缺陷所造成的缺陷(Trap –assisted recombination) 15 3.2 對基板鈍化的機制與原理 19 3.2.1化學鈍化(Chemical passivation) 19 3.2.2場效應鈍化(Field effect passivation) 20 3.3 少數載子生命週期量測準穩態光導(QSSPC)量測法 22 3.4 鍺基板載子遷移率模型基礎 24 第四章 實驗儀器與製程設備 27 4.1 元件結構 27 4.2 製程步驟與流程 28 4.2.1基板清洗 28 4.2.2薄膜沉積 31 4.2.3通氣退火 32 4.2.4正電極沉積 33 4.3 實驗儀器介紹 34 4.3.1少數載子生命週期量測儀(WCT-120) 34 4.3.2電流-電壓(I-V)電性量測儀 36 4.3.3 X-ray光電子能譜儀(X-ray Photoelectron Spectroscopy) 36 4.4 製程設備 38 4.4.1雙電子槍蒸鍍機(E-gun evaporator) 38 4.4.2原子層沉積(Atomic layer deposition) 38 4.4.3電漿輔助化學氣相沉積(PECVD) 40 第五章 IV族基板鈍化研究分析 41 5.1 氧化物鈍化層過程與參數 41 5.1.1三氧化二鋁(Al2O3)製程 41 5.1.2二氧化矽(SiO2)、二氧化鈦(TiO2)與五氧化二鉭(Ta2O5)製程 41 5.1.3氮化矽(SiNx)製程 42 5.2 少數過量載子生命週期量測分析 43 5.2.1矽基板上鈍化層分析 43 5.2.2鍺基板上鈍化層分析 45 5.2.3少數過量載子生命週期分析結論 46 5.3 電流-電壓(I-V)特性曲線量測分析 48 5.3.1鈍化層於不同基板上I-V分析 48 5.4 光電子能譜儀(XPS)材料分析 52 5.4.1 Al2O3薄膜元素分析 52 5.4.2 TiO2薄膜元素分析 53 5.4.3 Ta2O5薄膜元素分析 54 5.4.4 SiO2/SiNx薄膜元素分析 56 5.4.5 本節結論 59 第六章 結論與未來工作 60 參考文獻 62

    [1.1] 楊德仁,太陽能光電材料,化學工業出版社,北京,2006。
    [1.2] 張品全,科學發展,349, pp.34-41,2004。
    [1.3] P. Würfel, Physics of Solar Cells, Willy -VCH Verlag GmbH & Co. KgaA, 2005.
    [1.4] Gavin Conibeer, “Review: Third-generation photovoltaics”, Material Today, 10 (11), pp. 745-747, 1987.
    [1.5] 顧鴻濤,太陽能電池元件導論,全威圖書有限公司,台北,2008。
    [1.6] A.Luque and A.Martí, " Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels", Physical Review Letters, 78 (26), pp.5014-5017, Feb 1997.
    [1.7] NREL, Latest chart on record cell efficiency: Best Research-cell Efficiencies, 05-11-2014, http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.
    [2.1] C. Leguijt, et al., “Very low surface recombination velocities on 2.5 Ω cm Si wafers, obtained with low-temperature PECVD of Si-oxide and Si-nitride”, Solar Energy Materials and Solar Cells, 34 (1-4), pp. 177-181, 1994.
    [2.2] M. Kerr, et al., “Comparison of the open circuit voltage of simplified PERC cells passivated with PECVD silicon nitride and thermal silicon oxide”, Progress in Photovoltaics: Research and Applicaions , 8 (5), pp. 529-536, 2000.
    [2.3] B.J. O'Sullivan, et al., “Atomic and Electrical Characterisation of Amorphous Silicon Passivation Layers”, Energy Procedia, 27, pp. 185-190, 2012.
    [2.4] G. D. Wilk, et al., “High-k gate dielectrics: Current status and materials properties considerations”, Journal of Applied Physics, 89 (10), pp. 5243-5275, 2001.
    [2.5] R. S. Johnson, et al., “Electron traps at interfaces between Si(100) and noncrystalline Al2O3, Ta2O5, and (Ta2O5)x(Al2O3)1−x alloys”, Journal of Vacuum Science & Technology B: Microelectroics and Nanometer structures, 19 (4), pp. 1606-1621, 2001.
    [2.6] K. Jager and R. Hezel, “A novel thin silicon solar cell with Al2O3 as surface passivation”, Proceeding of the 18th IEEE PVSC, pp.1752, Las Vegas, 1985.
    [2.7] G. Agostinelli, et al., “Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge”, Solar Energy Materials & Solar Cells, 90 (18-19), pp. 3438-3443, 2006.
    [2.8] B. Hoex, et al., “On the c-Si surface passivation mechanism by the negative-chargedielectric Al2O3”, Journal of Applied Physics, 104 (11), pp. 113703, 2008.
    [2.9] S . Kimura, et al., “Leakage-current increase in amorphous Ta205 films due to pinhole growth during annealing below 600℃”, Journal of Electrochemical Society, 130, pp. 2414-2417, 1983.
    [2.10] H. Kimura, et al., “Exafs Studies of the Difference in Local Structure of Various Tantalum Oxide Capacitor Films”, Material Research Society Proceedings, 354,pp. 489-451, Washington, 1994.
    [2.11] Yuichi Matsui, et al., “Reduction of Current Leakage in Chemical-Vapor Deposited Ta2O5 Thin-Films by Oxygen-Radical Annealing”, IEEE Electron Device Letters, 17(9), pp.431-434, Sep 1996.
    [2.12] Fu-Chien Chiu, et al., “Leakage currents in amorphous Ta2O5 thin films”, Journal of Applied Physics, 81 (10), pp. 6911-6915, 1997.
    [2.13] S. Chakraborty, et al., “Electrical Properties of High-k Ta205 Gate Dielectrics on Strained Ge-rich Layers”, Proceedings 24th International Conference on Microelectronics, 2, pp. 483-486, Serbia and Montenegro, May 2004.
    [2.14] S. A. Campbell, et al., “Titanium dioxide (TiO2)-based gate insulators", IBM journal of Research and Development, 4 (3), pp. 383-393, 1999.
    [2.15] E. Atanassova, A. Paskaleva, “Breakdown fields and conduction mechanisms in thin Ta2O5 layers on Si for high density DRAMs”, Microelectronics Reliability, 42 (2), pp. 157-173, 2002.
    [2.16] Jan Schmidt et al., “Surface passivation of silicon solar cells using plasma-enhenced chemical-vapour-deposited SiNfilm and thin thermal SiO2/plasma SiN stacks”, Semiconductor science and technology, 16 (3), pp.164-170, Dec 2001.
    [2.17] N. E. Posthuma, et al., “Surface passovation for germanium phtovoltaic cells”, Solar Energy Materials and Solar Cells, 88 (1), pp. 37-45, 2005.
    [3.1] J. Schmidt et al., “Coulomb-enhanced Auger recombination in crystalline silicon at intermediate and high-injection densities”, Journal of Applied Physics, 88 (3), pp. 1494-1497, Feb 2000.
    [3.2] D. K. Schroder, “Semiconductor Material and Device Characterization”, 2/e, John Wiley and Sons, New Jersey, USA, 1998.
    [3.3] P. T. Landsberg, “Trap-Auger recombination in Silicon of low carrier densities”, Applied Physics Letters, 50 (12), pp.745-747, Jan 1987.
    [3.4] D. B. Laks et al., “Accurate interband-Auger-recombination rates in Silicon”, Physical Review B, 42 (8), pp. 5176-5185, Sep 1990.
    [3.5] Maek J. Kerr and Andres Cuevas, “General parameterization of Auger recombination in crystalline Silicon”, Journal of Applied Physics, 91(4), pp. 2473-2481, Nov 2002.
    [3.6] E. Yablonovitch et al., “Unusually Low Surface-Recombination Velocity on Silicon and Germanium Surfaces”, Physical Review Letters, Vol. 57, 2, pp. 249-252, Jul 1986.
    [3.7] W. shockley and W. T. Read, “Statistics of the Recombinations of Holes and Electrons”, Physical Review, 87, pp. 835-842, Sep 1952.
    [3.8] R. N. Hall, “Electron-Hole recombination in Germanium”, Physical Review, 87, pp. 387, Jul 1952.
    [3.9] Donald A. Neamen, Semiconductor Physics & Devices, 3/E, McGraw-Hill, New York, 2003.
    [3.10] Q. Y. Tong et al., “Hydrophobic Silicon wafer bonding”, Applied Physics Letters, 64 (5), pp. 625-627, Nov 1993.
    [3.11] Susanne Helland, “Electrical Characterization of Amorphous Silicon Nitride Passivation Layers for Crystalline Silicon Solar Cells”, Norwegian University of Science and Technology, master thesis, 2011.
    [3.12] D. M. Caughey and R. E. Thomas, “Carrier Mobilities in Silicon Empirically Related to Doping and Field”, Proceedings of the IEEE, pp.2192-2193, Dec 1967.
    [3.13] P. H. Nguyen, et al., “Comparative full-band Monte Carlo study of Si and Ge with screened pseudopotential-based phonon scattering rates”, Journal of Applied Physics, 92 (9), pp. 5359-5371, 2002.
    [4.1] J. Kim, et al., “Germanium Surface Cleaning with Hydrochloric Acid”,The Electrochemical Society meeting, 3 (7), pp. 1191-1196, 2006.
    [4.2] J. M. Hutson, et al., “Electrical and radiation assisted passivation of Ta2O5 / Si interface”, Journal of Applied Physics, 95 (12), June 2004.
    [4.3] J. Schmit, et al., “Surface Passivation of High-efficiency Silicon Solar Cells by Atomic-layer-deposited Al2O3”,Proceedings in photovoltaics: Research and Applications, 16 (6), pp. 461-466, Sep 2008.
    [4.4] Keith R. McLntosh, et al., “Charge Density in Atmospheric Pressure Chemical Vapor Deposition TiO2 on SiO2-Passivated Silicon”, Journal of the Electrochemical Society, 156 (11), pp. 190-195, Sep 2009.
    [4.5] Jan Schmidt et al., “Surface passivation of silicon solar cells using plasma-enhenced chemical-vapour-deposited SiN film and thin thermal SiO2/plasma SiN stacks”, Semiconductor science and technology, 16, pp. 164-170, Dec 2001.
    [4.6] F. Kersten, et al., “Role of annealing conditions on surface passivation properties of ALD Al2O3 films”, Energy Precedia, 38, pp. 843-848, Mar 2013.
    [4.7] S. Chakraborty, et al., “Effects of annealing on the electrical properties of TiO2 films deposited on Ge-rich SiGe substrates”, Journal of Applied Physics, 100 (023706), pp. 1-6, Jul 2006.
    [4.8] S. P. Murarka, M. Eizenberg, A. K. Sinha, Interlayer Dielectrics, Elsevier Inc., London UK, 2003.
    [4.9] K. Kita and S. Suzuki et al., “Direct Evidence of GeO Volatilization from GeO2/Ge and Impact of Its Suppression on GeO2/Ge Metal–Insulator–Semiconductor Characteristics”, Japanese Journal of Applied Physics, 47 (4), pp.2349-2353, Apr 2008
    [4.10] R. SinTon and D. Macdonald, WCT-120 Photoconductance Lifetime Tester and optional Suns-VOC Stage User Manual, SINTON CONSULTING, Inc, Colorado, USA.
    [4.11] Steven M. George, “Atomic Layer Deposition: An Overview”, Chemical Review, 110, pp.111-131, Feb 2009.
    [4.12] Y. Wan et al., “Characterisation and optimisation of PECVD SiNx as an antireflection coating and passivation layer for silicon solar cells”, Applied Physics Letters Advances, 3 (032113), pp.1-14, 2013.
    [4.13] A. G. Aberle and R. Hezel, “Progress in Low-temperature Surface Passivation of Silicon Solar Cells using Remote-plasma Silicon Nitride”, Progress in Photovoltaics: Research and Applications, 5, pp. 29-50, 1997.
    [5.1] Y. Otani, et al., “Fabrication of Ta2O5/GeNx gate insulator stack for Ge metal-insulator-semiconductor structures by electron-cyclotron-resonance plasma nitridation and sputtering deposition techniques”, Applied Physics Letters, 90 (14), pp. 1421114-1421117, 2007.
    [5.2] J. T. Mayer, et al., “Titanium and reducd titania overlayers on titanium dioxide (110)”, Journal of Electron Spectroscopy and Related Phenomena, 73 (1), pp. 1-11, May 1995.
    [5.3] S. Hashimoto, et al., “Formulation for XPS Spectral Change of oxides by Ar Ion Bombardment: Application of the formulation to Ta2O5 System”, Journal of Surface Analysis, 13 (1), pp. 14-18, Mar 2006
    [5.4] E. Atanassova, et al., “XPS study of N2 annealing effect on thermal Ta2O5 layers on Si”, Applied Surface Science, 225 (1-4), pp. 86-99, Sep 2004.
    [5.5] X. Ling, “Characteristics and Electrical Properties of SiHx:H Films Fabricated by Plasma-Enhanced Chemical Vapor Deposition”, Journal of Electronic Science and Technology of China, 3 (3), pp. 264-267, Sep 2005.
    [5.6] Michael Blech, et al., “Detailed Study of PECVD Silicon Nitride and Correlation of Various Characterization Techniques”, 24th European Photovoltaic Solar Energy Conference, pp. 507-509, Hamburg, Germany, Sep 2009.

    QR CODE
    :::