| 研究生: |
許捷翔 Chieh-Hsiang Hsu |
|---|---|
| 論文名稱: |
利用聚合物摻雜膽固醇液晶拓寬其反射頻譜 Broadening the reflection bandwidth of cholesteric liquid crystals doped with polymers |
| 指導教授: |
鄭恪亭
Ko-Ting Cheng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 照明與顯示科技研究所 Graduate Institute of Lighting and Display Science |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 171 |
| 中文關鍵詞: | 拓寬 、反射頻譜 、聚合物摻雜 |
| 外文關鍵詞: | Broadening, reflection bandwidth, doped with polymers |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本論文主要區分為兩部分的研究主題,其一為利用旋性聚合物照光聚合過程中,其所提供的螺旋力將逐漸減弱,進而使膽固醇液晶的螺距將隨之漸變,且該過程中旋性聚合物受照光聚合並形成聚合物網絡結構,該結構可穩固聚合過程漸變的螺距,進而獲得反射頻譜拓寬的結果。在此部分實驗我們發現使用適當厚度的液晶盒,右旋性聚合物單體能有效的穩固右旋性膽固醇液晶,此部分最佳拓寬後反射頻譜之波長範圍介於556 nm與813 nm之間(共約257 nm)。若以右旋性聚合物單體穩固左旋性膽固醇液,當右旋性聚合物聚合時,膽固醇液晶的螺距變化較為劇烈,導致膽固醇液晶旋性抵銷不平均,無法均勻的穩固不同旋性的螺距,故造成反射頻譜窄化的現象;本論文另一項研究重點為控溫聚合之聚合物穩固膽固醇液晶螺距,本實驗的目標是穩固部分80oC膽固醇液晶的螺距,且保有降溫至室溫時的膽固醇液晶螺距,故可利用空間上不同反射頻譜的分布拓寬該液晶合反射頻譜。此部分實驗發現,發現於厚度過大的液晶盒中,聚合完成的聚合物枝條將壓迫80oC時的膽固醇液晶螺距,使原本完整80oC時的膽固醇液晶螺距被破壞,且壓縮為更小的螺距,反射頻譜往更短波長偏移且反射率下降,但在液晶盒厚度為5 μm時,聚合物單體確實能有效穩固80oC時的膽固醇液晶螺距,但無法同時保有降溫至室溫時的膽固醇液晶螺距。
Abstract
This thesis consists of two main research topics. The first part is with regard to the broadening the reflection band width of cholesteric liquid crystals (CLCs) by using the photo-polymerization of chiral polymer (LC756). The basic concept can be understood as described follows. With the illumination of UV light, the chirality of the LC mixture can be reduced due to the reduction of the amount of un-polymerized chiral polymer. Moreover, during the photo-polymerization process, the pitch length will gradually increase so that the polymerized LC756 can generate polymer network structures to stabilize the changing pitch length. It indicates that the gradient pitch, causing the broadening of the reflection spectrum, can be obtained by the polymerization process. In this part of the experiments, we found that the right-handed chiral polymer (LC756) can effectively stabilize the right-handed CLC filled into a LC cell with suitable cell gap. Experimentally, the optimized reflection band ranges between 556 and 813 nm, whose bandwidth was about 257 nm. Regarding the case of stabilization of left-handed CLCs by right-handed chiral polymer (LC756), the broadening of reflection band cannot be obtained. We infer that the CLC structure of the case of pitch increasing is much uniform than that of pitch decreasing during photo-polymerization processes. The other research topic in this thesis is the photo-polymerization process at different temperature to stabilize CLCs pitch length. Regarding the temperature dependent pitch length of CLCs, if the reflection band of CLCs at high temperature can be polymer-stabilized, the reflection band can be kept when the temperature is cooled down to room temperature. Hence, with regional photo-polymerization, the additive reflection colors in various regions can be applied to broaden the reflection band of CLCs. The cell gap, curing temperature, and material selection are the main keys to achieve such broadening reflection bands of CLCs
參考資料
[1] B. Bahoadur, Liquid crystals-applications and uses, (World Scientific Press, 1990).
[2] F. Reinizer, “Beitrage zur kenntiniss des cholesterins,” Monatsh. Chem. 9, 421-441 (1888).
[3] O. Lehmam, “Ü ber fliessende Krystalle,” Z. Phys. Chem. 4, 462-472 (1889).
[4] 陳言愈,電控及光控膽固醇液晶光柵之研究 (國立成功大學,碩士論文,民國100年).
[5] 松本正一,角田市良,液晶之基礎與運用 (國立編譯館,1996).
[6] H. Keller, “History of liquid crystals,” Mol. Cryst. Liq. Cryst. 21, 1-48 (1973).
[7] G. W. Gray, Thermotropic liquid crystals, (the Society of Chemical Industry 1987).
[8] W. H. de Jeu, Physical properties of liquid crystalline materials, (Gordon & Breach, 1980).
[9] H. S. Kitzerrow and C. Bahr, Chirality in Liquid Crystals, (Springer, New York, 2001).
[10] S. 圓盤狀分子, B. K. Sadashiva, and K. A. Suresh, “Liquid-crystals of disc-like molecules,” Pramana. J. Phys. 9, 471-480 (1977).
[11] A. Yariv, Optical Electronics in Modern Communications, (Oxford University Press, New York, 1997).
[12] A. Yariv, Quantum Electronics, (Wiley, New York, 1988).
[13] P. Yeh and C. Gu, Optics of liquid crystal displays, (John Wiley & Sons, Inc., 2006).
[14] G. R. Fowles, Introduction to modern optics, 2nd ed., (University of Utah, 1975).
[15] I. C. Khoo and S. T. Wu, Optics and nonlinear optics of liquid crystals, (World Scientific, 1993).
[16] P. G. de Gennes, and J. Prost, The physics of liquid crystals, (Oxford University Press, 1993).
[17] L. M. Blinov and V. G. Chigrinov, Electrooptic effects in liquid crystal materials, (Springer-Verlag Publishing Co., 1994).
[18] V. Fréedericksz and A. Repiewa, “Theoretisches und experimentelles zur frage nach der natur der anisotropen flüssigkeiten,” Zeitschrift für Physik 42, 532 (1927).
[19] P. J. Collings and Michael Hird, Introduction to liquid crystals chemistry and physics (Taylor & Francis Ltd, 1997)
[20] S.T. Wu, D.K. Yang, Reflective Liquid Crystal Displays (John Wiley & Sons Ltd, 2001).
[21] T. V. Galstyan, V. E. Drnoyan, and S. M. Arakelian, “Self-induced oscillations and asymmetry of the light angular spectrum in a dye doped nematic,” Phys. Lett. A 217, 52-58 (1996).
[22] P. G. de Gennes, “Calcul De La Distorsion D’une Structure Cholesterique Par un Champ Magnetique,” Sol. State Commun. 6, 163 (1968).
[23] R. B. Meyer, “Effects of electric and magnetic fields on the structure of cholesteric liquid crystals,” Appl. Phys. Lett. 12, 281 (1968).
[24] P. Fu, P. Ye, Z. Yu, and H. Lu, “Bragg reflection from a cholesteric liquid-crystal slab in the framework of nonlinear optics,” J. Opt. Soc. Am. B 4, 1392 (1987).
[25] Yan-Song Zhang, A.V. Emelyanenko, and Jui-Hsiang Liu, “Fabrication and Optical Characterization of Imprinted Broad-Band Photonic Films via Multiple Gradient UV Photopolymerization,” J. Polym. Sci. Part B Polym. Phys. 55, 1427 (2017).
[26] Man-yu Duan, Hui Cao, Yong Wu, Er-li Li, Hui-hui Wang, Dong Wang, Zhou Yang, Wan-li Hea, and Huai Yangc“Broadband reflection in polymer stabilized cholesteric liquid crystal films with stepwise photo-polymerization,” Phys. Chem. Chem. Phys. 19, 2353 (2017).
[27] Jongyoon kim, Hyungmin Kim, Seongil kim, Suseok Choi, Wonbong Jang, Jinwuk Kim, And Ji-Hoon Lee,“Broadening the reflection bandwidth of polymer-stabilized cholesteric liquid crystal via a reactive surface coating layer,” Applied Optics 56, 5731 (2017).
[28]Hyungmin Kim, Jongyoon Kim, Seongil kim, Jinook Kim, And Ji-Hoon Lee,* “Effect of the ratio between monoacrylate and diacrylate reactive mesogen on the transmission spectrum of polymer-stabilized cholesteric liquid crystal,” Optical Materials Express 8, 97 (2018).
[29] Yong Li, Dan Luo, And Zeng Hui Peng, “Full-color reflective display based on narrow bandwidth templated cholesteric liquid crystal film,” Opt. Mater. Express 7, 16 (2017).
[30] 許維婷,液晶盒厚度量測方法的研究 (國立成功大學,碩士論文民93年).
[31] SIGMA-ALDRICH, retrieved from https://www.sigmaaldrich.com/catalog/product/aldrich/196118
[32] Shin-Ying Lu and Liang-Chy Chien, “A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection,” Appl. Phys. Lett. 91, 131119 (2007)
[33] Su Xu, Yifan Liu, Jie Sun and Shin-Tson Wu, “Fast-Response Liquid Crystal Microlens,” Micromachines 5, 300-324 (2014).
[34] Yu-Cheng Hsiao, Zong-Han Yang, Dong Shen, and Wei Lee, “Red, Green, and Blue Reflections Enabled in an Electrically Tunable Helical Superstructure,” Adv. Optical Mater. 6, 1701128 (2018)