| 研究生: |
李思穎 Si-Ying Li |
|---|---|
| 論文名稱: |
生物相容性鈦鋯基多孔隙金屬玻璃製作及其性質之研究 Synthesis and characterization of biocompatibility open-cell TiZr based metallic glass foam |
| 指導教授: |
鄭憲清
Shian-Ching Jang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 金屬玻璃 、熱壓成型 、孔隙率 、人工骨骼 |
| 外文關鍵詞: | metallic glass, bulk metallic glass foam, hot compression forming, porosity |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈦合金具有相當高的生物相容性,穩定性以及高安全性。在醫療骨科植體方面有廣泛的應用,尤其是在骨折手術中所需的骨釘、骨板以及人工骨骼等。但由於鈦合金之楊氏係數(E)與人體的骨頭有相當大的差異,而導致應力遮蔽效應(stress-shielding)造成原本的骨頭萎縮;相較於鈦合金,金屬玻璃(Metallic glass)具有較低的楊氏係數、高彈性變性回彈能力、高硬度等性質,且鈦基金屬玻璃有著出色的生物相容性、低密度以及耐腐蝕性。本研究自鈦鋯系列金屬玻璃中選擇,對人體無害之成分且具較高的玻璃形成能力的Ti42Zr35Si5Sn2.5Co12.5Ta3製作多孔材,藉由參數調整製備出符合骨性細胞長入低楊氏係數之孔隙尺寸及孔隙率。首先將Ti42Zr35Si5Sn2.5Co12.5Ta3合金利用真空旋鑄機製作出鈦基金屬玻璃薄帶,再利用SPEX震動球磨機製作出鈦基金屬玻璃粉體,最後將鈦基金屬玻璃粉體添加不同體積比例之氯化鈉於其過冷溫度區間熱壓成型,並經超音波水洗後製作出鈦基金屬玻璃多孔材,製作出不同孔隙率的鈦基金屬玻璃多孔材,尺寸可達直徑約12 mm及厚度約5 mm。
鈦基金屬玻璃多孔材在孔隙率37.8 %左右的楊氏係數與機械強度和人體骨骼較為接近;分別為楊氏係數可達至24.8 GPa且機械強度為41.4 MPa,並可以透過Gibbson和Ashby的模組,模擬出50 %孔隙率以下鈦基金屬玻璃多孔材的楊氏係數與機械強度之關係。
Recently, Titanium base alloys have already widely used in medical applications, especially the bone nail, metal sutures, and bone implant because of its high biocompatibility, stability, and safety in human body. However, titanium alloys is much higher Young's modulus than human bone. This leads to stress-shielding and causes atrophy of original bones (Because of the Young's modulus mismatch, the surgery often failed due to stress-shielding.). In addition, we should be concerned about the durability, corrosion resistance and safety of Titanium alloys in human body. Compare to Titanium base alloys, Ti-based metallic glass has low Young’s modulus, excellence biocompatibility, low density, high elasticity resilience, and corrosion resistance. This research aims to make bulk metallic glass foam by using the Ti42Zr35Si5Sn2.5Co12.5Ta3 metallic glass because of its high glass forming ability and harmless to human body. At first, Ti42Zr35Si5Sn2.5Co12.5Ta3 alloy ingot was prepared by arc-melting, then re-melted and fabricated into MG ribbon by vacuum melt-spinning process. The MG ribbons were chopped and mechanical milled into MG powders by SPEX milling. Furthermore, the different volume fraction combinations of Ti-based MG powder and NaCl powder were mixed and hot-compressed in to bulk form at the supercooled temperature region of Ti-based MG. Finally, these Ti-based BMGFs with dimension of 12 mm in diameter and 4 mm in thickness were obtained by washing out the NaCl from the hot-compressed bulk samples by ultrasonic cleaning in water. Meanwhile, the results of this study show that the Ti-based BMGF with about 37.8 % porosity has similar value of Young's modulus to human bones.
[1]. A.C. Lund and C. A. Schuh, “Topological and chemical arrangement of binary alloys during severe deformation”, Journal of Applied Physics, vol. 95 , 2004, pp.4815-4822.
[2]. P. K. Bhoyar and Dr.A.B. Borade “Advance biocompatibility material for implant”, Journal of Materials Science and Engineering., vol. 1 Issue: 3, pp.145-199.
[3]. J. J. Oak , D. V. Louzguine-Luzgin and A. Inoue, “Fabrication of Ni-free Ti-based bulk-metallic glassy alloy having potential for application as biomaterial, and investigation of its mechanical properties, corrosion, and crystallization behavior”, Journal of Materials Research, vol. 22, Issue 5, 2007, pp1346-1353.
[4]. J. J. Oak and A. Inoue, “Attempt to develop Ti-based amorphous alloys for biomaterials”, Materials Science and Engineering , A 449-451, (2007), pp. 220–224.
[5]. Z.Y. Suo, S.W. Liu, L. Zhang, H. L. Gao, H. Y. Zhang and K. Q. Qiu, “Porous Bulk Metallic Glass Fabricated by Powder Consolidation”, Journal of Minerals & Materials Characterization & Engineering, vol. 7, No.2, 2008, pp 97-104.
[6]. G.S. Steinemann, S.M. Perren, G. L¨utjering, U. Zwicker and W. Bunk (Eds.), “Corrosion of titanium and titanium alloys for surgical implants” Ti , 84 Science and Technology, 1984, pp. 1327-1334.
[7]. G.S. Steinemann, in: G.D. Winter, J.L. Leray and K.E. de Goot (Eds.), “Corrosion of surgical implants in vivo and in vitro tests”, Evaluation of Biomaterials, Wiley, New York, 1980, pp. 1-13.
[8]. M. Niinomi, Metals for Biomedical Devices, CRC Press, 2010.
[9]. C. Leyens and M. Peters (Eds.), Titanium and Titanium Alloys: Fundamentals and Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003.
[10]. B. Basu, D. Katti and A. Kumar (Eds.), Advanced Biomaterials — Fundamentals, Processing and Applications, Wiley, 2009.
[11]. M. Geetha, A.K. Singh, R. Asokamani and A.K. Gogia, Prog. “Ti based biomaterials, the ultimate choice for orthopaedic implants-A review”, Materials Science. vol. 54, 2009, pp. 397–425.
[12]. M. Long and H.J. Rack, “Titanium Alloys in Total Joint Replacement-A Materials Science Perspective’’, Biomaterials,19, 1998, pp.1621–1639.
[13]. M. Nicoara, A. Raduta, R. Parthiban, C. Locovei, J. Eckert and M. Stoica, “Low Young’s modulus Ti-based porous bulk glassy alloy without cytotoxic elements”, Acta Biomaterialia, vol. 36, 2016, pp.321-331.
[14]. C.H. Huang, Y.S. Huang, Y.S. Lin, C.H. Lin, J.C. Huang, C.H. Chen, J.B. Li, Y.H. Chen and J.S.C. Jang, “Electrochemical and biocompatibility response of newly developed”, Materials Science and Engineering., C 43, 2014, pp.343-349.
[15]. J.B. Li, H.C. Lin, J.S.C. Jang, C.N. Kuo, Y.H. Chen and J.C. Huang, “Novel open-cell bulk metallic glass foams with promising characteristic”, Materials Letters, 105,2013, pp.140-143.
[16]. A. Brenner, “Electrodeposition of Alloys’’, vol. 1 and 2 Academic Press, 1963.
[17]. W. Klement, R.H. Willens, and P. Duwez, “Non-crystalline Structure in solidified Gold-Silicon alloys,” Nature, vol. 187, 1960, pp.869-870.
[18]. H.S. Chen and C.E. Miller, “A rapid quenching technique for the preparation of thin uniform films of amorphous solids”, Review of Scientific Instruments, vol. 41, 1970, pp.1237-1238.
[19]. 吳學陞,工業材料,149, 1999, pp.154.
[20]. C.C. Koch, O.B. Cavin, C.G. McKamey, and J.O. Scarbrough, “Preparation of amorphous Ni60Nb40 by mechanical alloying”, Applied Physics Letters, vol. 43, 1983, pp.1017-1019.
[21]. A. Inoue and K. Hashimoto, “Amorphous and Nanocrystalline Materials”, Springer, 1995, pp.7.
[22]. A. Inoue, “Buck amophous alloys with soft and hard magnetic properties”, Materials Science and Engineering., vol.226-228, 1997, pp.357-363.
[23]. A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, “Mg-Cu-Y Amorphous Alloys with High Mechanical Strengths Produced by a Metallic Mold Casting Method’’, Materials Transactions JIM, vol. 32, 1991, pp.609-616.
[24]. A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto, “Mg-Cu-Y Bulk Amorphous Alloys with High Tensile Strength Produced by a High-Pressure Die Casting Method’’, Materials Transactions JIM, 33, 1992, pp.937-945.
[25]. A. Inoue and T. Wada, “Fabrication, Thermal Stability and Mechanical Properties of Porous Bulk Glassy Pd-Cu-Ni-P Alloys’’, Materials Transactions, vol. 44, No. 10, 2003, pp. 2228-2231.
[26]. A. Inoue, “Bulk amorphous alloys with soft and hard magnetic properties”, Materials Science and Engineering, vol. 226-228, 1997, pp.357-363.
[27]. A. Inoue, “High strength bulk amorphous alloys with low critical cooling rates”, Materials Transactions JIM, vol. 36, 1995, pp.866-875.
[28]. A. Inoue, T. Zhang and A. Takeuchi, “Ferrous and nonferrous bulk amorphous alloys”, Materials Science Forum, vol. 269-272, 1998, pp.855-864.
[29]. A. Inoue, A. Takeuchi and T. Zhang, “Ferromagnetic bulk amorphous alloys”, Metallurgical and Materials Transactions, vol. 29, 1998, pp.1779-1793.
[30]. R.E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles 3rd Edition, PWS-KENT Publishing Company, Boston, 1994.
[31]. D.R. Gaskell, Introduction to the Thermodynamics of Materials 4th Edition, Taylor & Francis, US, 2009.
[32]. R. W. Cahn, P. Hassen and E. J. Kramer(ed), Materials Science and Technology, vol.9, New York, USA, 1991.
[33]. K. L. Chapra, Thin Film Phenomena, McGraw-Hill, 1969.
[34]. W. Paul and R. J. Temkin, “Amorphous germanium I. A model for the structural and optical properties ”, Advance Physical., 1973, pp.531-580.
[35]. B. Li, N. Nordstrom and E. J. Lavernia, “Spray forming of Zircaloy-4”, Materials Science Engineering., A 237, 1997, pp.207-215.
[36]. R. Liu, J. Li, K. Dong, C. Zheng and H. Liu, “First synthesis of vanadium oxide thin films by spray pyrolysis technique” Materials Science Engineering., B 94, 2002, pp.141-147.
[37]. P. S. Grant, “Spray forming”, Progress in Materials Science, vol. 39, 1995, pp.497-545.
[38]. C. R. M. Afonso, C. Bolfarini, C. S. Kiminami, N. D. Bassim, M. J. Kaufman, M. F. Amateau, T. J. Eden and J. M. Galbraith, J. M. Galbraith, “Amorphous phase formation during spray forming of Al84Y3Ni8Co4Zr1” Non-Cryst. Solids, vol.284, 2001, p.134-138.
[39]. K.L. Chopra, “Thin Film Phenomena”, McGraw-Hill, 1969.
[40]. R. W. Cahn, P. Hassen and E. J. Kramer(ed), Materials Science and Technology, vol. 9, New York, USA, 1991.
[41]. A. Inoue, N. Nishiyama and H.M. Kimura, “Preparation and Thermal Stability of Bulk Amorphous Pd40Cu30Ni10P20 Alloy Cylinder of 72 mm in Diameter”, Materials Transactions JIM, vol. 38, 1997, pp.179-183.
[42]. A. Inoue, N. Nishiyama, H.M. Kimura, “Preparation and Thermal Stability of Bulk Amorphous Pd40Cu30Ni10P20 Alloy Cylinder of 72 mm in Diameter”, Materials Transactions JIM, vol. 38, 1997, pp.179-183
[43]. A. Inoue, “Bulk amorphous and nanocrystalline alloys with high functional properties”. Materials Science., vol.304-306, 2001, pp.1-10.
[44]. A.Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta Materialia, vol. 48, 2000, pp.279-306
[45]. J.S.C. Jang, I.H. Wang, L.J. Chang, G.J. Chen, T.H. Hung and J.C. Huang, “Crystallization kinetics and thermal stability of the Zr60Al7.5Cu17.5Ni10Si4B1 amorphous alloy studied by isothermal differential scanning calorimetry and transmission electron microscopy”, Materials Science and Engineering. A, vol. 449-451, 2007, pp.511-516.
[46]. T.A. Waniuk, J. Schroers and W.L. Johnson, “Critical cooling rate and thermal stability of Zr-Ti-Cu-Ni-Be alloys”, Applied Physics Letters, vol. 78, 2001, pp.1213-1215.
[47]. A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, “High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems”, Acta Materialia, vol. 49, 2001, pp.2645-2652.
[48]. A. Inoue, “Stabilization of Metallic Super Cooled Liquid and Bulk Amorphous Alloys”, Acta Materials, vol. 48, 2000, pp.279-306.
[49]. 鄭振東,非晶質金屬漫談,建宏出版社,1990.
[50]. A. Inoue and A. Takeuchi, “Recent development and application products of bulk glassy alloys”, Acta Materialia, vol. 59, 2011, pp.2243-2267.
[51]. C.L. Qiu, L. Liu, M. Sun and S.M. Zhang, “The effect of Nb addition on mechanical properties, corrosion behavior, and metal-ion release of Zr-Al-Cu-Ni bulk metallic glasses in artificial body fluid”, Journal of Biomedical Materials Research, vol. 75, 2005, pp.950-956.
[52]. A. Inoue, B.L. Shen, A.R. Yavari and A.L. Greer, “Mechanical properties of Fe-based bulk glassy alloys in Fe–B–Si–Nb and Fe–Ga–P–C–B–Si systems”, Journal of Materials Research, vol. 18, 2003, pp.1478-1492.
[53]. S. R. Elliot, “Physics of Amorphous Materials’’, USA, 1990.
[54]. International Organization for Standardization, “ISO-10993: Biological Evaluation of Medical Devices ’’, 3rd, 2003.
[55]. R. Zallen, “The Physics of Amorphous Solids’’, A Wiley-Interscience, Canada,1983.
[56]. A. Inoue, K. Nakazato, Y. Kawamura, A. P. Tsai and T. Masumoto, “Effect of Cu or Ag on the Formation of Coexistent Nanoscale Al Particles in Al-Ni-M-Ce (M=Cu or Ag) Amorphous Alloys”, Materials Transactions JIM, vol. 35, 1994, pp.95-102.
[57]. J.B. Li, H.C. Lin, J.S.C. Jang, C.N. Kuo and J.C. Huang, “Novel open-cell bulk metallic glass foams with promising characteristics”, Materials Letters vol. 105, 2013, pp.140-143.
[58]. A.G. Evans, J.W. Hutchinson and M.F. Ashby, “Multifunctionality of cellular metal systems”, Progress in Materials Science, vol. 43, 1999, pp.171-221.
[59]. H.C. Lin, P.H. Tsai, J.H. Ke, J.B. Li, J.S.C. Jang, C.H. Huang and J.C. Huang, “Design a toxic-element-free Ti-based amorphous alloy with remarkable supercooled liquid region for biomedical application”, Journal, intermetallic 55, 2014, pp.22-27.