跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊凱丞
Kai-Cheng Yang
論文名稱: 適用於反式MAPbI3太陽能電池之 電洞傳輸材料研究
指導教授: 吳春桂
Chun-Guey Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 96
中文關鍵詞: 鈣鈦礦太陽能電池
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用一步驟溶劑工程(one-step anti-solvent engineering)法製備鈣鈦礦膜的製程,測試本實驗室所合成的12個新有機電洞傳遞層
    材料的效能,並與使用PEDOT:PSS為電洞傳輸材料及沒有使用電洞傳
    遞層所組裝的元件之效率做比較,以篩選出具潛力之新結構有機電洞
    傳輸材料。實驗結果顯示以(Z)-2-cyano-3-(-4 (diphenylamino)phenyl) acrylic acid (1DA) 為電洞傳輸材料所組裝的反式元件效率最高,搭配主動層MAPbI3所組裝的元件效率為12.03%。另外以4,4',4'',4'''- (spiro[fluorene-9,9'-xanthene]-2,2',7,7'-tetrayl)tetrakis(N,N-di-p-tolylaniline) (HTL-2)及3-(5-(4 (diphenylamino)
    phenyl)thiophen-2-yl)-2,5-bis(2-ethylhexyl)-6-(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (DPP-TPA)為電洞傳輸材料所組裝的元件,效率分別為10.02%及8.40%,皆比沒有使用電洞傳遞層的元件之效率(5.34%)高,但卻比使用PEDOT:PSS之電池元件效率(12.59%)低。從能階分布圖來看,HTL-2、1DA及DPP-TPA的HOMO能階與MAPbI3的HOMO能階可以匹配、LUMO能階能有效阻擋電子往ITO移動,降低電荷再結合機會,是具有潛力的電洞傳輸材料。從SEM圖發現沉積在PEDOT:PSS上的鈣鈦礦顆粒間排列緻密,但沉積在HTL-2與1DA的鈣鈦礦膜,顆粒間有小缺陷,可能是因PEDOT:PSS比三種新有機材料親水性高,因此沉積其上MAPbI3的品質較好。另外HTL-2、1DA及DPP-TPA皆溶於GBL與DMSO (MAPbI3起始溶液所使用之溶劑),在沉積MAPbI3膜時,可能破壞下層的電洞傳遞層膜,材料的溶解特性也是尋找新反式鈣鈦礦太陽能電池用的電洞傳輸材料所需考慮的因素。


    In this study, we use one-step anti -solvent engineering method to prepare perovskite films, to test the performance of 12 new p-type organic materials synthesized in our laboratory. Inverted perovskite solar
    cells (PSC) with PEDOT:PSS as a hole transporter or without hole transporting layer were also fabricated for the comparison. The results show that inverted PSC based on (Z) -2-cyano-3- (4- (diphenylamino)phenyl) acrylic acid (1DA) achieves the power conversion efficiency
    (PCE) of 12.03%. The PCEs of the cells based on 4,4',4'',4'''-(spiro[fluorine-9,9'-xanthene]-2,2',7,7'-tetrayl)tetrakis(N,N-di-p-tolylanili
    ne) (HTL-2) and 3-(5-(4-(diphenylamino)phenyl)thiophen-2-yl)-2,5-bis(2-ethylhexyl)-6-(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione(DPP-TPA) are 10.02% and 8.40%, respectively. The power conversion
    efficiency of the cells with no hole transporter and PEDOT:PSS transporter are 5.34% and 12.59%,respectively. The HOMO levels of HTL-2, 1DA and DPP-TPA can match the HOMO level of MAPbI3, and the LUMO can effectively block the electron transfer from the perovskite layer to the ITO electrode, reduce the charge recombination. SEM images of the perovskite film reveal that better quality film was deposited on more hydrophilic PEDOT:PSS surface. Furthermor the solvents (DMF, DMSO, GBL) of the perovskite precursor solution may damage the hole transporting layer underneath, decreasing the efficiency. Therefore the solubility of the hole transporter is something need to be seriously concerned when design new hole transporting materials.

    摘要 I Abstract II 謝誌 IV 目錄 V 圖目錄 IX 表目錄 XII 第一章、緒論 1 1-1前言 1 1-2 鈣鈦礦太陽能電池(perovskite solar cell, PSC) 4 1-2-1 鈣鈦礦太陽能電池的架構 4 1-2-2 反式鈣鈦礦太陽能電池的工作原理 5 1-2-3 鈣鈦礦太陽能電池的光電轉換效率 6 1-3 鈣鈦礦太陽能電池之研究歷程 9 1-3-1 第一個將鈣鈦礦材料應用於太陽能電池的研究 9 1-3-2 將固態電解質應用於鈣鈦礦太陽能電池 11 1-3-3 第一個反式結構鈣鈦礦太陽能電池的研究 13 1-4 鈣鈦礦活性層的製備方法 14 1-4-1 以一步驟合成法製備鈣鈦礦活性層 14 1-4-2 以兩步驟合成法製備鈣鈦礦活性層 15 1-4-3 一步驟反溶劑處理法製備鈣鈦礦活性層 17 1-5 電洞傳輸材料之研究 19 1-6 研究動機 27 第二章、實驗方法 28 2-1 實驗藥品與儀器 28 2-1-1 藥品 28 2-1-2 儀器設備 29 2-2 甲基銨碘(CH3NH3I)的合成 29 2-3 反式鈣鈦礦太陽能電池元件組裝步驟 30 2-3-1 藥品配製 30 2-3-2 元件組裝步驟 31 2-3-3 SCLC (space charge limit current)載子遷移率測試之元 件組裝 35 2-4 儀器分析及樣品製備 36 2-4-1 太陽光模擬器及光電轉換效率量測 36 2-4-2 掃描式電子顯微鏡 37 2-4-3 X-ray 繞射光譜儀 38 2-4-4 熱蒸鍍系統(thermal evaporation system) 39 2-4-5 太陽能電池外部量子效率量測系統 40 2-4-6 接觸角量測儀(contact angle, PENTAD FTA-125) 41 2-4-7 空間電荷限制電流方法(Space Charge Limit Current Method, SCLC), 用於量測材料之載子遷移率 41 2-4-8 光激發螢光光譜儀(Photoluminescence Spectrometer) 43 第三章、結果與討論 44 3-1 使用不同的電洞傳遞層材料所組裝之反式鈣鈦礦太陽能電 池元件的光電轉換效率 44 3-1-1 以PEDOT:PSS、Spiro-OMeTAD 與不使用電洞傳遞層所組 裝元件的光電轉換效率 44 3-1-2 以HTL-2 為電洞傳輸材料的元件優化 46 3-1-3 以 1DA 為電洞傳遞材料的元件優化 49 3-2 不同電洞傳遞層材料與主動層MAPbI3 的能階示意圖 52 3-3 電洞傳遞層材料的接觸角探討 55 3-4 沉積在不同電洞傳遞層上的鈣鈦礦膜的SEM 圖 57 3-5 沉積在不同電洞傳輸材料上的鈣鈦礦的XRD 圖 60 3-6 沉積在不同電洞傳輸材料上之鈣鈦礦膜的PL 光譜圖 62 3-7 不同電洞傳輸材料的電洞遷移率 (hole mobility) 63 3-8 以1DA 所組裝成元件的再現性與穩定性 65 第四章、結論 71 參考文獻 73

    [1] http://web2.yzu.edu.tw/e_news/585/10_new01.html (2017 年8 月11日)
    [2] http://en.wikipedia.org/wiki/Gustav_Rose (2017 年8 月11 日)
    [3] Sun, S.; Salim, T.; Mathews, N.; Duchamp, M.; Boothroyd, C.; Xing,G.; Sum, T, C.; Lam, Y, M., The origin of high efficiency in low-temperaturesolution-processable bilayer organometal halidehybrid solar cells, Energy Environ. Sci. 2014, 7, 399-407.
    [4] Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H., Dye-Sensitized Solar Cells, Chem. Rev. 2010, 110, 6595-6663.
    [5] Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, J. Am. Chem. Soc. 2009, 131, 6050-6051.
    [6] Kim, H, S.; Lee, C, R.; Im, J, H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Baker, R. H.; Yum, J. H.; Moser, J. E.; Gra¨tzel, M.; Park, N.-G., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%, Sci. Rep. 2012, 2, 591-597.
    [7] Jeng, J.-Y.; Chiang, Y.-F.; Lee, M.-H.; Peng, S.-R.; Guo, T.-F.; Chen, P.; Wen, T.-C., CH3NH3PbI3 Perovskite/Fullerene Planar- Heterojunction
    Hybrid Solar Cell, Adv. Mater, 2013, 25, 3727–3732.
    [8] Chiang, C.-H.; Lin, J.-W.; Wu, C.-G., One-step fabrication of a mixed-halide perovskite film for a high-efficiency inverted solar cell and module, J. Mater. Chem. A, 2016, 4, 13525-13533.
    [9] Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin M. K.; Gratzel, M., Sequential deposition as a route to high performance perovskite sensitized solar cell, Nature, 2013, 499, 316–319.
    [10] Chiang, C.-H.; Nazeeruddin, M.-K.; Gratzel, M.; Wu, C.-G., The synergistic effect of H2O and DMF toward stable and 20% efficiency inverted perovskite solar cells, Energy Environ. Sci., 2017, 10, 808-817.
    [11] Jeon, N.- J.; Noh, J.- H.; Kim, Y.- C.; Yang, W.- S.; Ryu, S.; Seok, S, Il., Solvent engineering for high-performanceinorganic–organic hybrid perovskite solar cells, Nature Materials, 2014, 13, 897-903.
    [12] Chiang, C.-H.; Wu, C.-G., Film Grain-Size Related Long-Term Stability of Inverted Perovskite Solar Cells, ChemSusChem, 2016, 9, 2666 –2672.
    [13] Bi, C.; Wang,Q.; Shao,Y.; Yuan, Y.; Xiao, Z. and Huang, J., Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells, Nat. Commun., 2015, 6, 7747-7753.
    [14] Huang, C.; Fu, W.; Li, C.-Z.; Zhang, Z.; Qiu, W.; Shi, M.; Heremans, P.; Jen, K.-Y.; Chen, H., Dopant-Free Hole-Transporting Material with a C3h Symmetrical Truxene Core for Highly Efficient Perovskite Solar Cells, J. Am. Chem. Soc., 2016, 138 (8), 2528–2531.
    [15] Li,Y.; Xu, Z.; Zhao, S.; Xiao, B.; Huang, D.; Zhao, L.; Zhao, J.; Wang, P.; Zhu, Y.; Li, X.; Liu, X.; Xu, X., Highly Efficient p-i-n Perovskite Solar Cells Utilizing Novel Low-Temperature Solution-Processed Hole Transport Materials with Linear π-Conjugated Structure, Small, 2016, 01, 1603-1609.
    [16] Hu, Z.; Fu, W.; Yan, L.; Miao, J.; Yu, H.; He, Y.; Osamu, G.; Meng, H.; Chen, H.; Huang, W., Effects of heteroatom substitution in spirobifluorene hole transport materials, Chem. Sci. 2016, 7, 5007-5012.
    [17] http://highscope.ch.ntu.edu.tw/wordpress/?p=41141 (2017年8月11日)
    [18] Yang, W.-S.; Park, P.-W.; Jung, E.-H.; Jeon, N.-J.; Kim, Y.-C.; Lee, D.-U.; Shin, S.-S.; Seo, J.; Kim, E.-K.; Noh, J.-H. Seok, S, Il., Iodide management in formamidinium-lead-halide–based perovskite layers
    for efficient solar cells, Science, 2017, 356, 1376–1379.
    [19] Park, S.-J., Jeon, S.; Lee. I.-K.; Zhang, J.; Jeong, H.; Park, J.-Y.; Bang, J.; Ahn, T.-K.; Shin, H.-W.; Kim, B.-G.; Park, H.-J., Inverted planar perovskite solar cells with dopant free hole transporting material: Lewis base-assisted passivation and reduced charge recombination, J. Mater. Chem. A, 2017, 5, 13220-13227.
    [20] Xu, B.; Bi, D.; Hua, Y.; Liu, P.; Cheng, M.; Gratzel, M.; Kloo, R.; Hagfeldt, A.; Sun, L., A low-cost spiro[fluorene-9,90-xanthene]- based hole transport material for highly efficient solid-state dye-sensitized solar cells and perovskite solar cells, Energy Environ.
    Sci., 2016, 9, 873-877.
    [21] Yang, L.; Yan, Y.; Cai, F.; Li, J.; Wang, T., Poly(9-vinylcarbazole) as a hole transport material for efficient and stable inverted planar
    heterojunction perovskite solar cells, Solar Energy Materials & Solar Cells, 2017, 163, 210-217.
    [22] Malinkiewicz, O.; Yella, A.; Lee, Y.-H.; Espallargas, G.-M.; Graetzel, M.; Nazeeruddin, M.-K.; Bolink, H.-J., Perovskite solar cells employing organic charge-transport layers, Nat. Photon.,2014, 8, 128–132.
    [23] Tsai, K.-W.; Chueh, C.-C.; Williams, S.-T.; We, T.-C.; Jen, K.-Y., High-performance hole transporting layer-free conventional perovskite/fullerene heterojunction thin-film solar cells, J. Mater. Chem. A, 2015, 3, 9128–9132.
    [24] Li, Y.; Ye, S.; Sun, W.; Yan, W.; Li, Y.; Bian, Z.; Liu, Z.; Wang, S.; Huang, C., Hole-conductor-free planar perovskite solar cells with 16.0% efficiency, J. Mater. Chem. A, 2015, 3, 18389–18394.
    [25] Zhao, K.; Munir, R.; Yan, B.; Yang, Y.; Kim, T.; Amassian, A., Solution-processed inorganic copper (I) thiocyanate (CuSCN) hole transporting layers for efficient p–i–n perovskite solar cells, J. Mater. Chem. A, 2015, 3, 20554-20559.
    [26] Grisorio, R.; Iacobellis, R.; Listorti, A.; Marco, L.-D.; Cipolla, M.-A.; Manca, M.; Rizzo, A.; Abate, A.; Gigli, G.; Suranna, G.-P., Rational Design of Molecular Hole-Transporting Materials for Perovskite Solar Cells: Direct versus Inverted Device Configurations, ACS Appl.
    Mater. Interfaces, 2017, 9, 24778−24787.
    [27] Peng, S.-H.; Huang, T.-W.; Gollavelli, G.; Hsu, C.-S., Thiophene and diketopyrrolopyrrole based conjugated polymers as efficient alternatives to spiro-OMeTAD in perovskite solar cells as hole transporting layers, J. Mater. Chem. C, 2017, 5, 5193-5198.
    [28] Neophytou, M.; Griffiths, J.; Fraser, J.; Kirkus, M.; Chen, H.; Nielsen, C.-B.; McCulloch, I., High mobility, hole transport materials for highly efficient PEDOT:PSS replacement in inverted perovskite solar cells, J. Mater. Chem. C, 2017, 5, 4940-4945.
    [29] Ji, G.; Zheng, G.; Zhao, B.; Song, F.; Zhang, X.; Shen, K.; Yang, Y.; Xiong, Y.; Gao, X.; Cao, L.; Qi, D.-C., Interfacial electronic structures revealed at the rubrene/CH3NH3PbI3 interface, Phys. Chem. Chem. Phys., 2017,19, 6546-6553.
    [30] Liu, D.; Li, Y.; Yuan, J.; Hong, Q.; Shi, G.; Yuan, D.; Wei, J.; Huang, C.; Tang, J.; Fung, M.-K., Improved performance of inverted planar perovskite solar cells with F4-TCNQ doped PEDOT:PSS hole transport layers, J. Mater. Chem. A, 2017, 5, 5701-5708.
    [31] Lin, Q.; Jiang, W.; Zhang, S.; Nagiri, R.-C.-R.; Jin, H.; Burn, P.-L.; Meredith, P., A Triarylamine-Based Anode Modifier for Efficient Organohalide Perovskite Solar Cells, ACS Appl. Mater. Interfaces, 2017, 9, 9096–9101.
    [32] Yan, W.; Li, Y.; Ye, S.; Li, Y.; Rao, H.; Liu, Z.; Wang, S.; Bian,Z.; Huang, C., Increasing open circuit voltage by adjusting work function of hole-transporting materials in perovskite solar cells, Nano Research, 2016, 9, 1600–1608.

    QR CODE
    :::