| 研究生: |
黃文建 Wen-Jian Hwang |
|---|---|
| 論文名稱: |
利用多塔變壓吸附法回收及濃縮煙道氣中二氧化硫之模擬 Simultanion of Recovering and Concentrating SO2 from Flue Gas by Multi-bed Pressure Swing Adsorption |
| 指導教授: |
周正堂
Cheng-Tung Chou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 模擬 、二氧化硫 、酸雨現象 、真空變壓吸附 、實驗計畫法 |
| 外文關鍵詞: | vacuum swing adsorption, design of experiment, acid-rain phenomena, sulfur dioxide, simulation |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
動力工廠所排放出含硫量過高之氣體是造成酸雨現象的主要原因。使用變壓吸附法濃縮及回收煙道氣中二氧化硫,使之再利用,為解決問題方法之一。近來這方面的研究已成為處理這類工廠廢氣之首要。
本研究主要利用模擬方式,採用三塔六步驟真空變壓吸附程序,處理進料為0.5﹪SO2,17﹪CO2,其餘為N2之煙道氣,吸附劑採用XAD-16(NO-treated)。模擬時所用的氣體分離機構為平衡模式,假設吸附塔內的同一截面積上固、氣兩相瞬間達成平衡,且為非恆溫之變壓吸附模式,因吸附劑顆粒大,故可忽略吸附塔內壓力降。
此一新程序可將濃度為0.5﹪SO2濃縮至12.54%,回收率達100%;本研究並探討各操作參數(諸如:各個步驟操作時間、進料壓力與沖洗比等等)對程序效能的影響,且利用直交表之實驗計畫法對此製程做模擬結果分析,可由結果得到準確的預測模式,其與模擬結果相比較,準確度約98%。
The major cause for acid-rain phenomena is the emission of SO2 from power plants that burn fossil flues. It is all-important that the recovery and concentration of SO2 from flue gas in solving SO2 problem by pressure swing adsorption.
The study is on a three-bed six-step vacuum swing adsorption process using XAD-16 with NO-treated. It was performed simulation for bulk separation of SO2/CO2/N2 (0.5/17/82.5 vol %) system. This study used the equilibrium model and the pressure drop can be neglected. We assumed instantaneous equilibrium between the solid and gas phase with non-isothermal operation.
The 0.5%SO2 in the feed could be concentrated to 12.54% in the product with a recovery of 100% by this study. The effects of three operating variables such as adsorption pressure, P/F ratio, steps time were investigated on the performance of this study.
The design of experiment was used in analysis of simulation process and could get predictive polynomial function of result. The accuracy of function which descries performance of this study is near to 98%.
參考文獻
1.Berlin, N.H., U.S. Patent 3,280,536, assigned to Esso research and engineering company (1966).
2.Bird, R.B., W.E. Stewart and E. N. Lightfoot, Transport Phenomena, 503, Wiley, New York(1960).
3.Chue, K.T., J.N. Yoo, S.H. Cho and R.T. Yang, “Comparison of Activated Carbon and Zeolite 13X for CO2 Recovery from Flue Gas by Pressure Swing Adsorption”, Ind. Eng. Chem. Res., 34(2), 591-598 (1995).
4.Diagne D., M. Goto and T. Hirose, “New PSA Process with Intermediate Feed Inlet Position Operated with Dual Refluxes: Application to Carbon Dioxide Removal and Enrichment”, J. Chem. Eng. Jpn., 27(1), 85-89(1994).
5.Diagne D., M. Goto and T. Hirose, “Numerical Analysis of a Dual Refluxed PSA Process During Simultaneous Removal and Concentration of Carbon Dioxide Dilute Gas from Air”, J. Chem. Tech. Biotechnol., 65, 29-38 (1996).
6.Doong, S.J. and R.T. Yang, “Bulk Separation of Multicomponent Gas Mixtures by Pressure Swing Adsorption: Pore/Surface Diffusion and Equilibrium Models”, AIChE J., 32, 397 (1986).
7.Doong, S.J., and R.T. Yang,“Bidisperse Pore Diffusion Model for Zeolite Pressure Swing Adsorption”, AIChE J., 33, 1045 (1987b).
8.Dong, F., L. Hongmei, K. Akio, G. Motonobu and H. Tsutomu, “The Petlyuk PSA process for the separation of ternary gas mixtures: exemplification by separating a mixture of CO2–CH4–N2”, Separation and Purification Technology, 16, 159-166(1999)
9.Farooq, S. and D. M. Ruthven, “A Comparison of linear Driving Force and Pore Diffusion Models for a Pressure Swing Adsorption Bulk Separation Process”, Chem. Eng. Sci., 45, 107 (1990b).
10.Gomes, V. G. and M. M. Hassan “Coalseam methane recovery by vacuum swing adsorption”, Separation and Purification Technology, 24, 189-196 (2001)
11.Guerin de Montgareuil, P. and D. Domine, U.S. Patent 3,155,468, to Societe L, Air Liquide, Paris(1964).
12.Hassan, M.M., D.M. Ruthven and N.S. Raghavan, “Air Separation by Pressure Swing Adsorption on A Carbon Molecular Sieve”, Chem. Eng. Sci., 41, 1333 (1986).
13.Hassan, M. M. and N. S. Raghavan, “Pressure Swing Adsorption Air Separation on a Carbon Molecular Seive-II. Investigation of a Modified Cycle with Pressure Equalization and No Purge”, Chem. Eng. Sci., 42, 2037 (1987).
14.Izumi, J., “Hydrogen Sulfide Removel with Pressure Swing Adsorption from Process Off-Gas” in Fundamentals of Adsorption (Ed. M. Suzuki), Kodan-sha, Tokyo, 293-299(1992a).
15.Izumi, J., “Process Off-Gas Treatment with Pressure Swing Adsorption”,Proceedings of Symposium on Adsorption Processes, Chung-Li, Taiwan, 71-84(1992b).
16.Jee J.,M. Kim and C. Lee,“Adosorption Characteristics of Hydrogen Mixtures in a Layered Bed : Binary, Ternary, and Five-component Mixtures”, Ind. Eng. Chem Res. , 40, 868-878 (2001)
17.Kikkinides, E.S. and R.T. Yang, “Simultaneous SO2/NOx Removel and SO2 Recovery from Flue Gas by Pressure Swing Adsorption ”, Ind. Eng. Chem. Res., 30(8), 1981-1989 (1991).
18.Kikkinides, E.S. and R.T. Yang, “Gas Separation and Purification by Polymeric Adsorbents: Flue Gas Desulfurization and SO2 Recovery with Styrenic Polymers”, Ind. Eng. Chem. Res., 32(10), 2365-2372(1993).
19.Kikkinides, E.S., R.T. Yang and S.H. Cho, “Concentration and Recovery of CO2 from Flue Gas by Pressure Swing Adsorption”, Ind. Eng. Chem. Res., 32(11), 2714-2720 (1993).
20.Kim, J.N., K.T. Chue, K.I. Kim, S.H. Cho and J.K. Kim, “Non-Isothermal Adsorption of Nitrogen-Carbon Dioxide Mixture in a Fixed Bed of Zeolite-X”, J. Chem. Eng. Japan, 27(1), 45-51 (1994).
21.Kowler, D.E. and R. H. Kadlec, “The Optimal Control of a Periodic Adsorber”, AIChE. J., 18, 1027 (1972).
22.Lee, C., J. Yang and H. Ahn, “Effects of Carbon-to-Zeolite Ratio on Layered Bed H2 PSA for Coke Oven Gas”, AIChE J., Vol.45,No.3 (1999)
23.Li, Z. and R. T. Yang, “Concentration Profile for Linear Driving Force Model for Diffusion in a Particle”, AIChE J., 45(1), 1999.
24.Marsh, W.D., F.S. Pramuk, R.C. Hoke and C.W. Skarstrom, U.S. Patent 3,142,547 to Esso Research and Engineering Company(1964).
25.McCabe, W.L., J.C. smith and P. Harriott, Unit operations of Chemical Engineering, 325, 406-408, Fourth Edition, McGraw-Hill, Inc.(1985)
26.Montgomery, D.C. ,Design & Analysis of experiments, Wiley, New York (1997)
27.Nakao, S. and M. Suzuki, “Mass Transfer Coefficient in Cyclic Adsorption and Desorption”, J. Chem. Eng. Japan, 16, 114(1983).
28.Park, J., J. Kim and S. Cho, “Performance Analysis of Four-Bed H2 PSA Process Using Layered Beds”, AIChE J.,Vol. 46, No.4 (2000)
29.Pugsley T.S., F. Berruti and A. Chakma, “Computer Simulation of a Novel Circulating Fluidized Bed Pressure-Temperature Swing Adsorption for Recovering Carbon Dioxide from Flue Gases”, Chem. Eng. Sci., 49(22), 4465-4481(1994).
30.Rubel,A.M. and J.M.Stencel, The Effect of Low-Coneentration SO2 on the Adsorption of NO from Gas over Activated Carbon. 521-526. Fuel 1997.
31.Ruthven,D.M., Principles of Adsorption & Adsorption Process,209-213,Wiley(1984)
32.Shin, H.S. and K. S. Knabel, “Pressure Swing Adsorption: A Theoretical Study of Diffusion-Induced Separation”, AIChE J., 33, 654 (1987).
33.Sircar, S. and J.W. Zondlo, U.S. Patent 4,013,429 to Air Product and Chemicals, Inc (1977).
34.Siriwardane, R. V., M. Shen, E. P. Fisher and J. A. Poston, “Adsorption of CO2 on Molecular Sieves and Activated Carbon”, Energy & Fuels,15,279-284 (2001)
35.Skarstrom, C.W., “Use of Adsorption Phenomena in Automatic Plant-Type Gas Analysis”, Ann., NY Acad. Sci.,72,751(1959).
36.Skarstrom, C.W.,“Fractionating gas mixtures by adsorption”, U.S. Patent 2,444,627, assigned to Esso research and engineering company (1960).
37.Smith, J.M. and H.C. Van Ness, Introduction to chemical Engineering Thermodynamics, p.109, 4th edith, McGraw-Hill Book Company,(1987)
38.Takamura, Y., S. Narita, J. Aoki, S. Hironaka and S. Uchida “Evaluation of dual-bed pressure swing adsorption for CO2 recovery from boiler exhaust gas”, Separation and purification Technology 24,519-528(2001).
39.Tamura, T., U.S. Patent 3,797,201, assigned to T. Tamura, Tokoy, Japan(1974).
40.Turnock, P. H. and R. H. Kadlec, “Separation of Nitrogen and Methane via Periodic Adsorption”, AIChE J., 17, 335 (1971).
41.Welty, J.R.,C.R. Wicks and R.E. Wilson, Fundamentals of Momentum, Heat, and Mass Transfer, AppendixⅠ, John Wiley & Sons, Inc. (1983).
42.Yang, J., C. Lee and J. Chang,“Separation of Hydrogen Mixture by a Two-Bed Pressure Swing Adsorption Process Using Zeolite 5A”, Ind. Eng. Chem. Res. ,36, 2789-2798 (1997)
43.Yang, R.T. and S.J. Doong, “Gas Separation by Pressure Swing Adsorption : A Pore Diffusion Model for Bulk Separation”, AIChE J., 31, 1829 (1985).
44.Zhang, W.X., H. Yahiro, N. Mizuno, M. Iwamoto and J. Izumi, “Silver Ion-Exchanged Zeolites as Highly Effective Adsorbents for Removal of Nox by Pressure Swing Adsorption”, Journal of Materials Science Letters, 12, 1197-1198 (1993a).
45.Zhang, W.X., H. Yahiro, N. Mizuno, J. Izumi and M. Iwamoto, “Removal of Nitrogen Monoxide on Copper Ion-Exchanged Zeolites by Pressure Swing Adsorption”, Langmuir, 9(9), 2337-2343 (1993b).
46.Zhang, W. , M. Jia, J. Yu and T. Wu, “Adsorption properties of Nitrogen Monoxide on Silver Ion-Exchanged Zeolites”, chem. master., 11,920-923 (1999)