跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林昆鋒
Kuen-feng Lin
論文名稱: 高效率有機-無機鈣鈦礦薄膜太陽能電池製程與電光特性之研究
Fabrication and Optoelectronic Properties of High Efficient Organic-Inorganic Thin-Film Perovskite based Photovoltaics
指導教授: 陳昇暉
Sheng-hui Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 144
中文關鍵詞: 鈣鈦礦材料太陽能電池
外文關鍵詞: Perovskite, Solar cell
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來全球對於綠色能源的概念漸漸興起,故而太陽能電池的研究發展備受矚目,其中鈣鈦礦結構 (perovskite absorber , PA) 薄膜太陽能電池自2012年進展最為迅速,鈣鈦礦結構是晶體結構的名稱,應用於太陽能研究中的吸光材料是以有機-無機物交錯而構成。其中以CH3NH3PbI3 、CH3NH3PbI3-x Clx 及CH(NH2)2PbI3為吸光層的電池中,各種結構的太陽能電池之功率轉換效率 (Power Conversion Efficiency , PCE) 的元件都有將近10% 以上的表現。

    本篇論文使用溶液製程法來製備高效率的鈣鈦礦 (CH3NH3PbI3) 薄膜太陽能電池,並利用掃描式電子顯微鏡、二維X光繞射儀、吸收光譜儀、螢光光譜儀、奈秒時間解析螢光光
    譜儀與拉曼光譜儀,研究鈣鈦礦薄膜的結構與光電特性,藉此優化出能於本實驗室中製作,且具有最高功率轉換效率之元件的製程條件,並了解各層材料於不同製程條件下的特性。而本篇論文的溶液製程主要是採用旋轉塗佈的方式,其優點在於能夠以低耗能、低成本與快速的方式製備鈣鈦礦薄膜太陽能電池。

    本篇論文的元件架構為:Ag/PC61BM/CH3NH3PbI3/PEDOT:PSS/ITO/glass。 Ag (銀) 與ITO (氧化銦錫) 各別為電池的陰極與陽極;[6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) 與Poly (3-hexylthiophene-2,5-diyl) (PEDOT:PSS)各別是電池的電子傳遞層 (electron transport layer , ETL) 與電洞傳遞層 (hole transport layer , HTL);CH3NH3PbI3則是電池的吸光層。以旋轉塗佈法製作PEDOT:PSS薄膜、CH3NH3PbI3薄膜與PC61BM薄膜,最後使用真空熱蒸鍍的方式製作陰極層Ag,在優化製程參數下所得到最高效率之元件的功率轉換效率 (PCE) 達12.54%;短路電流 (Jsc) 達20.51 mA/cm^2,開路電壓 (Voc) 達0.93 V,填充因子 (FF) 達65.67%。


    In recent years, the concept of greenergy is gradually risen in the global. Therefore, the research and development of solar cells get more attention. The power conversion efficiency (PCE) of perovskite absorber (PA) based solar cells have grown rapidly since from 2012. Perovskite is the name of a kind of crystal structure. The structure which is organic and inorganic materials interleaving constitution has been used as the light absorber in solar cells. CH3NH3PbI3, CH3NH3PbI3-XClX, and CH(NH2)2PbI3 thin films have been used as the light absorber, which can produce high PCE (> 10%) using different device structures.
    In this thesis, the CH3NH3PbI3 based solar cells were fabricated using the one-step solution process with an in-situ washing treatment. We also use scanning electron microscope (SEM), two-dimensional X-ray diffractometer (2D-XRD), absorbance spectrum, photoluminescence (PL), nanosecond time-resolved photoluminescence (NTR-PL) and Raman spectroscopy to explore the structural and optoelectronic properties of perovskite thin films. After above mentioned analyses, the optimized parameters for device fabrication in our laboratory were obtained. We used the spin-coating process to fabricate the thin films. This process has some advantages about spending less time consuming and money.

    The architecture of our solar cells is: Ag / PCBM / CH3NH3PbI3 / PEDOT: PSS / ITO / glass. Ag and ITO are used as the cathode and anode electrodes, respectively. [6,6] -phenyl-C61-butyric acid methyl ester (PCBM) and poly (3-hexylthiophene-2,5-diyl) (PEDOT:PSS) are used as the electron transport layer (ETL) and hole transport layer (HTL) ,respectively. CH3NH3PbI3 film is the light absorber of the device.

    The PEDOT:PSS film, CH3NH3PbI3 film and PCBM film are fabricated by spin coating method. Finally, the Ag film was deposited on top of the PCBM film using a vacuum thermal evaporation method. In our research, the highest PCE of the perovskite solar cell is 12.54%. The short-circuit current density (Jsc) is 20.51 mA / cm2; the open-circuit voltage (Voc) is 0.93 V; and the fill factor (FF) is 65.67%.

    摘要...................................................i Abstract.............................................iii 致謝...................................................v 目錄.................................................vii 圖目錄.................................................x 表目錄................................................xv 第一章 緒論............................................1 1.1前言................................................1 1.2太陽能電池歷史與種類簡介..............................4 1.2.1無機太陽能電池.....................................5 1.2.2有機太陽能電池 (OPV)...............................7 1.2.2.1高分子有機太陽能電池..............................7 1.2.2.2小分子有機太陽能電池..............................9 1.2.3染料敏化太陽能電池 (DSSC)..........................10 1.3研究動機............................................12 1.4本文架構 (本論文共七章)..............................14 第二章 鈣鈦礦太陽能電池介紹與文獻回顧....................15 2.1鈣鈦礦結構源起.......................................15 2.2鈣鈦礦敏化太陽能電池.................................16 2.3異質介面鈣鈦礦太陽能電池.............................18 2.4平面異質介面鈣鈦礦太陽能電池..........................20 2.5影響鈣鈦礦成膜的因素.................................22 2.6薄膜鈣鈦礦太陽能電池工作原理..........................27 第三章 實驗方法........................................31 3.1實驗藥品與儀器 ......................................31 3.1.1實驗藥品..........................................31 3.1.2掃描式電子顯微鏡...................................32 3.1.3太陽光模擬器 .......................................33 3.1.4太陽能電池外部量子效率量測系統......................34 3.1.5 X光繞射儀........................................35 3.1.6紫外光/可見光光譜儀................................36 3.1.7拉曼光譜儀........................................37 3.1.8光激發螢光光譜儀...................................38 3.1.9熱蒸鍍鍍膜系統.....................................39 3.2藥品合成與溶液調配...................................40 3.2.1甲基胺碘藥品合成...................................40 3.2.2溶液配置...........................................41 3.3鈣鈦礦薄膜太陽能電池標準片製程.........................43 3.3.1 ITO基板之蝕刻及清洗...............................44 3.3.2 UV-Ozone Cleaner.................................45 3.3.3旋塗PEDOT:PSS層及熱退火處理.........................45 3.3.4旋塗鈣鈦礦層及熱退火處理............................45 3.3.5旋塗PC61BM層及靜置處理..............................46 3.3.6刮出對電極.........................................47 3.3.7蒸鍍Ag電極.........................................47 第四章 鈣鈦礦薄膜太陽能電池製作結果分析...................48 4.1甲苯 washing treatment 對於鈣鈦礦吸收層之影響..........50 4.1.1甲苯 washing treatment與 J-Vcurve、SEM、XRD量測......50 4.1.2甲苯 washing treatment與 UV-vis、PL、NTR-PL量測......54 4.1.3甲苯 washing treatment與 重複性測試、IPCE量測........59 4.1.4甲苯 washing treatment結論..........................60 4.2不同熱退火溫度對於鈣鈦礦太陽能電池之影響.................61 4.2.1不同熱退火溫度處理與 J-Vcurve、SEM、XRD量測...........62 4.2.2不同熱退火溫度處理與 UV-vis、PL、NTR-PL量測...........68 4.2.3不同熱退火溫度處理與 Raman 量測......................75 4.2.4不同熱退火溫度處理結論...............................78 4.3不同熱退火時間對於鈣鈦礦太陽能電池之影響.................79 4.3.1不同熱退火時間處理與 J-Vcurve、SEM、XRD量測...........79 4.3.2不同熱退火時間處理結論...............................84 第五章 電子與電洞傳遞層對元件之影響.......................85 5.1不同重量百分濃度 PEDOT:PSS之影響.......................85 5.1.1不同重量百分濃度 PEDOT:PSS與J-V curve、UV-vis、SWV量測 ........................................................85 5.1.2不同重量百分濃度 PEDOT:PSS與 Raman 量測..............93 5.1.3不同重量百分濃度 PEDOT:PSS結論.......................95 5.2不同 PCBM 層材料以及轉速之影響.........................95 5.2.1不同 PCBM 層材料之影響..............................95 5.2.2不同轉速製備 PC61BM 層之影響.........................98 5.2.3不同 PCBM 層材料以及轉速結論........................107 第六章 最佳參數元件表現.................................109 6.1最佳製程參數之元件表現量測............................109 6.2長時間穩定性測試.....................................111 第七章 結論............................................114 參考資料...............................................117 論文著作列表............................................123

    [1] http://gensci.phys.nthu.edu.tw/NRsciences/files/irr/9.pdf
    [2] L. L. Kazmerski, National Renewable Energy Laboratory (NREL), Golden,
    CO (2015). http://www.nrel.gov/ncpv/images/efficiency_chart.jpg
    [3] L. peck, "Solar history: Alexandre Edmond Becquerellar," Solar Energy
    World Solar Panels, (2011). http://www.solarenergyworld.com/2011/
    06/17/ solar-history-alexandre-edmond-becquerel/
    [4] 蔡孟諺, "有機薄膜太陽能電池簡介," 國家實驗研究院-儀器科技中
    心簡訊, (2009) 95期.
    [5] A. Chodos, "This Month in Physics History-April 25, 1954: Bell Labs
    Demonstrates the First Practical Silicon Solar Cell," , (2009) pp. 4.
    http://www.aps.org/publications/apsnews/200904/physicshistory.cfm
    [6] Y. Kuang, M.D. Vece, J.K. Rath, L.v. Dijk, R.E.I. Schropp, "Elongated
    nanostructures for radial junction solar cells," Rep. Prog. Phys., 76 (2013)
    pp. 29.
    [7] http://www.chip1stop.com/web/EGY/en/tutorialContents.do?page=039
    [8] J. Tsukamoto, H. Ohigashi, K. Matsumura, A. Takahashi, "A Schottky
    Barrier Type Solar Cell Using Polyacetylene," J. Appl. Phys, 20
    (1981) 127.
    [9] S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, J.C.
    Hummelen, "2.5% efficient organic plastic solar cells," Appl. Phys.
    Lett., 78 (2001) 841-843.
    [10] F. Padinger, R.S. Rittberger, N.S. Sariciftci, "Effects of postproduction
    treatment on plastic solar cells," Adv. Funct. Mater., 13 (2003) 85-88.
    [11] J.S. Huang, G. Li, Y. Yang, "Influence of composition and heat-treatment
    on the charge transport properties of poly(3-hexylthiophene) and 6,6 -
    phenyl C-61-butyric acid methyl ester blends," Appl. Phys. Lett., 87
    (2005) 3.
    [12] G. Li, V. Shrotriya, Y. Yao, Y. Yang, "Investigation of annealing effects
    and film thickness dependence of polymer solar cells based on poly(3-
    hexylthiophene)," J. Appl. Phys., 98 (2005) 5.
    [13] V. Shrotriya, J. Ouyang, R.J. Tseng, G. Li, Y. Yang, "Absorption spectra
    modification in poly(3-hexylthiophene): methanofullerene blend thin
    films," Chem. Phys. Lett., 411 (2005) 138-143.
    [14] S.H. Chang, C.H. Chiang, H.M. Cheng, C.Y. Tai, C.G. Wu, "Broadband
    charge transfer dynamics in P3HT:PCBM blended film," Opt. Lett., 38
    (2013) 5342-5345.
    [15] J.B. You, L.T. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K.
    Emery, C.C. Chen, J. Gao, G. Li, Y. Yang, "A polymer tandem solar cell
    with 10.6% power conversion efficiency," Nat. Commun., 4 (2013) 10.
    [16] J.B. You, C.C. Chen, Z.R. Hong, K. Yoshimura, K. Ohya, R. Xu, S.L. Ye,
    J. Gao, G. Li, Y. Yang, "10.2% Power Conversion Efficiency Polymer
    Tandem Solar Cells Consisting of Two Identical Sub-Cells," Adv. Mater.,
    25 (2013) 3973-3978.
    [17] V.Y. Merritt, H.J. Hovel, "Organic solar cells of hydroxy squarylium,"
    Appl. Phys. Lett., 29 (1979) 414.
    [18] C.W. Tang, "Two‐layer organic photovoltaic cell," Appl. Phys. Lett., 48
    (1986) 183.
    [19] P. Peumans, S.R. Forrest, "Very-high-efficiency double-heterostructure
    copper phthalocyanine/C-60 photovoltaic cells," Appl. Phys. Lett., 79 (2001) 126-128.
    [20] 吳勇蒼, "分離式二氧化鈦奈米管在染料敏化太陽能電池之運用," 碩
    士論文, 國立中央大學光電科學工程學系 (民103年6月) .
    [21] B. Oregan, M. Gratzel, "A low-cost, high-efficiency solar cell based on
    dye-sensitized colloidal TiO2 films," Nature, 353 (1991) 737-740.
    [22] M.H. Kumar, N. Yantara, S. Dharani, M. Graetzel, S. Mhaisalkar, P.P.
    Boix, N. Mathews, Flexible, "low-temperature, solution processed ZnO-
    based perovskite solid state solar cells," Chem. Commun., 49 (2013)
    11089-11091.
    [23] Z.C. He, C.M. Zhong, S.J. Su, M. Xu, H.B. Wu, Y. Cao, "Enhanced
    power-conversion efficiency in polymer solar cells using an inverted
    device structure," Nat. Photonics, 6 (2012) 591-595.
    [24] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, "Organometal Halide
    Perovskites as Visible-Light Sensitizers for Photovoltaic Cells," J. Am.
    Chem. Soc., 131 (2009) 6050-6051.
    [25] http://www.mindat.org/min-3166.html.
    [26] S. De Wolf, J. Holovsky, S.J. Moon, P. Loper, B. Niesen, M. Ledinsky, F.J.
    Haug, J.H. Yum, C. Ballif, "Organometallic Halide Perovskites: Sharp
    Optical Absorption Edge and Its Relation to Photovoltaic Performance,"
    J. Phys. Chem. Lett., 5 (2014) 1035-1039.
    [27] K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, N. Miura,
    "Comparative study on the excitons in lead-halide-based perovskite-type
    crystals CH3NH3PbBr3CH3NH3PbI3," Solid State Commun., 127
    (2003) 619-623.
    [28] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, "6.5% efficient
    perovskite quantum-dot-sensitized solar cell," Nanoscale, 3 (2011) 4088-
    4093.
    [29] H. Sakamoto, S. Igarashi, M. Uchida, K. Niume, M. Nagai, "Highly
    efficient all solid state dye-sensitized solar cells by the specific interaction
    of CuI with NCS groups II. Enhancement of the photovoltaic
    characteristics," Org. Electron., 13 (2012) 514-518.
    [30] H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J.
    Moon, R. Humphry-Baker, J.H. Yum, J.E. Moser, M. Gratzel, N.G. Park,
    "Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film
    Mesoscopic Solar Cell with Efficiency Exceeding 9%," Sci Rep, 2 (2012)
    7.
    [31] J.H. Im, I.H. Jang, N. Pellet, M. Gratzel, N.G. Park, "Growth of
    CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite
    solar cells," Nat. Nanotechnol., 9 (2014) 927-932.
    [32] J.M. Ball, M.M. Lee, A. Hey, H.J. Snaith, "Low-temperature processed
    meso-superstructured to thin-film perovskite solar cells," Energy
    Environ. Sci., 6 (2013) 1739-1743.
    [33] J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, "Chemical
    Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid
    Nanostructured Solar Cells," Nano Lett., 13 (2013) 1764-1769.
    [34] J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K.
    Nazeeruddin, M. Gratzel, "Sequential deposition as a route to high-
    performance perovskite-sensitized solar cells," Nature, 499 (2013) 316-
    319.
    [35] H.P. Zhou, Q. Chen, G. Li, S. Luo, T.B. Song, H.S. Duan, Z.R. Hong, J.B.
    You, Y.S. Liu, Y. Yang, "Interface engineering of highly efficient
    perovskite solar cells," Science, 345 (2014) 542-546.
    [36] M.Z. Liu, M.B. Johnston, H.J. Snaith, "Efficient planar heterojunction
    perovskite solar cells by vapour deposition," Nature, 501 (2013) 395-398.
    [37] Q. Chen, H.P. Zhou, Z.R. Hong, S. Luo, H.S. Duan, H.H. Wang, Y.S. Liu,
    G. Li, Y. Yang, "Planar Heterojunction Perovskite Solar Cells via Vapor-
    Assisted Solution Process," J. Am. Chem. Soc., 136 (2014) 622-625.
    [38] J.Y. Jeng, Y.F. Chiang, M.H. Lee, S.R. Peng, T.F. Guo, P. Chen, T.C. Wen,
    "CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar
    Cells," Adv. Mater., 25 (2013) 3727-3732.
    [39] W.Y. Nie, H.H. Tsai, R. Asadpour, J.C. Blancon, A.J. Neukirch, G. Gupta,
    J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.L. Wang, A.D.
    Mohite, "High-efficiency solution-processed perovskite solar cells with
    millimeter-scale grains," Science, 347 (2015) 522-525.
    [40] H.S. Kim, S.H. Im, N.G. Park, "Organolead Halide Perovskite: New
    Horizons in Solar Cell Research," J. Phys. Chem. C, 118 (2014) 5615-
    5625.
    [41] M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith,
    "Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal
    Halide Perovskites," Science, 338 (2012) 643-647.
    [42] Y.X. Zhao, K. Zhu, "CH3NH3Cl-Assisted One-Step Solution Growth of
    CH(3)NH(3)Pbl(3): Structure, Charge-Carrier Dynamics, and Photovoltaic
    Properties of Perovskite Solar Cells," J. Phys. Chem. C, 118 (2014)
    9412-9418.
    [43] P.W. Liang, C.Y. Liao, C.C. Chueh, F. Zuo, S.T. Williams, X.K. Xin, J.J.
    Lin, A.K.Y. Jen, "Additive Enhanced Crystallization of Solution-
    Processed Perovskite for Highly Efficient Planar-Heterojunction Solar
    Cells," Adv. Mater., 26 (2014) 3748-3754.
    [44] G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J.
    Snaith, "Formamidinium lead trihalide: a broadly tunable perovskite for
    efficient planar heterojunction solar cells," Energy Environ. Sci., 7
    (2014) 982-988.
    [45] M.D. Xiao, F.Z. Huang, W.C. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A.
    Gray-Weale, U. Bach, Y.B. Cheng, L. Spiccia, "A Fast Deposition-
    Crystallization Procedure for Highly Efficient Lead Iodide Perovskite
    Thin-Film Solar Cells," Angew. Chem.-Int. Edit., 53 (2014) 9898-9903.
    [46] N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S. Il Seol, "Solvent
    engineering for high-performance inorganic-organic hybrid perovskite
    solar cells," Nat. Mater., 13 (2014) 897-903.
    [47] F.Z. Huang, Y. Dkhissi, W.C. Huang, M.D. Xiao, I. Benesperi, S. Rubanov,
    Y. Zhu, X.F. Lin, L.C. Jiang, Y.C. Zhou, A. Gray-Weale, J. Etheridge, C.R.
    McNeill, R.A. Caruso, U. Bach, L. Spiccia, Y.B. Cheng, "Gas-assisted
    preparation of lead iodide perovskite films consisting of a monolayer of
    single crystalline grains for high efficiency planar solar cells," Nano
    Energy, 10 (2014) 10-18.
    [48] W.J. Yin, T.T. Shi, Y.F. Yan, "Unusual defect physics in CH3NH3PbI3
    perovskite solar cell absorber," Appl. Phys. Lett., 104 (2014) 4.
    [49] F. Brivio, A.B. Walker, A. Walsh, "Structural and electronic properties of
    hybrid perovskites for high-efficiency thin-film photovoltaics from first-
    principles," APL Mater., 1 (2013) 5.
    [50] S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T.
    Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, "Electron-Hole Diffusion
    Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite
    Absorber," Science, 342 (2013) 341-344.
    [51] J.M. Frost, K.T. Butler, F. Brivio, C.H. Hendon, M. van Schilfgaarde, A.
    Walsh, "Atomistic Origins of High-Performance in Hybrid Halide
    Perovskite Solar Cells," Nano Lett., 14 (2014) 2584-2590.
    [52] C. Quarti, G. Grancini, E. Mosconi, P. Bruno, J.M. Ball, M.M. Lee, H.J.
    Snaith, A. Petrozza, F. De Angelis, "The Raman Spectrum of the
    CH(3)NH(3)Pbl(3) Hybrid Perovskite: Interplay of Theory and
    Experiment," J. Phys. Chem. Lett., 5 (2014) 279-284.
    [53] http://www.ccut.edu.tw/teachers/wentse/downloads/1031009-1.pdf.
    [54] D.Y. Liu, T.L. Kelly, "Perovskite solar cells with a planar heterojunction
    structure prepared using room-temperature solution processing
    techniques," Nat. Photonics, 8 (2014) 133-138.
    [55] K. F. Lin, S. H. Chang, K. H. Wang, H. M. Cheng, K. Y. Chiu, K. M. Lee,
    S. H. Chen, C. G. Wu , "Unraveling the high performance of tri-iodide
    perovskite absorber based photovoltaics with a non-polar solvent washing
    treatment," Sol. Energ. Mat. Sol. C., 141 (2015) 309-314.
    [56] G.C. Xing, N. Mathews, S.Y. Sun, S.S. Lim, Y.M. Lam, M. Gratzel, S.
    Mhaisalkar, T.C. Sum, "Long-Range Balanced Electron- and Hole-
    Transport Lengths in Organic-Inorganic CH3NH3PbI3," Science, 342
    (2013) 344-347.
    [57] Z.H. Gu, J.Q. Lu, A.A. Maradudin, "Enhanced backscattering from a
    free-standing dielectric film on a glass substrate," J. Opt. Soc. Am. A-
    Opt. Image Sci. Vis., 10 (1993) 1753-1764.
    [58] A.H. Chin, T.S. Ahn, H.W. Li, S. Vaddiraju, C.J. Bardeen, C.Z. Ning, M.K.
    Sunkara, "Photoluminescence of GaN nanowires of different
    crystallographic orientations," Nano Lett., 7 (2007) 626-631.
    [59] S. Yang, Y.C. Zheng, Y. Hou, X. Chen, Y. Chen, Y. Wang, H.J. Zhao, H.G.
    Yang, "Formation Mechanism of Freestanding CH3NH3PbI3 Functional
    Crystals: In Situ Transformation vs Dissolution-Crystallization," Chem.
    Mat., 26 (2014) 6705-6710.
    [60] G.D. Scholes, G. Rumbles, "Excitons in nanoscale systems," Nat.
    Mater., 5 (2006) 683-696.
    [61] T.C. Sum, N. Mathews, "Advancements in perovskite solar cells:
    photophysics behind the photovoltaics," Energy Environ. Sci., 7 (2014)
    2518-2534.
    [62] J.W. Lee, T.Y. Lee, P.J. Yoo, M. Gratzel, S. Mhaisalkar, N.G. Park,
    "Rutile TiO2-based perovskite solar cells," J. Mater. Chem. A, 2 (2014)
    9251-9259.
    [63] C. Bi, Y.C. Shao, Y.B. Yuan, Z.G. Xiao, C.G. Wang, Y.L. Gao, J.S. Huang,
    "Understanding the formation and evolution of interdiffusion grown
    organolead halide perovskite thin films by thermal annealing," J. Mater.
    Chem. A, 2 (2014) 18508-18514.
    [64] Q. Chen, H.P. Zhou, T.B. Song, S. Luo, Z.R. Hong, H.S. Duan, L.T. Dou,
    Y.S. Liu, Y. Yang, "Controllable Self-Induced Passivation of Hybrid Lead
    Iodide Perovskites toward High Performance Solar Cells," Nano Lett., 14
    (2014) 4158-4163.
    [65] A. Ates, M.A. Yildirim, M. Kundakci, M. Yildirim, "Investigation of
    optical and structural properties of CdS thin films," Chin. J. Phys., 45
    (2007) 135-141.
    [66] M. Yamashita, C. Otani, M. Shimizu, H. Okuzaki, "Effect of solvent on
    carrier transport in poly(3,4-ethylenedioxythiophene)/poly(4-
    styrenesulfonate) studied by terahertz and infrared-ultraviolet
    spectroscopy," Appl. Phys. Lett., 99 (2011) 3.
    [67] N.J. Zhou, K. Prabakaran, B. Lee, S.H. Chang, B. Harutyunyan, P.J. Guo,
    M.R. Butler, A. Timalsina, M.J. Bedzyk, M.A. Ratner, S. Vegiraju, S. Yau,
    C.G. Wu, R.P.H. Chang, A. Facchetti, M.C. Chen, T.J. Marks, "Metal-
    Free Tetrathienoacene Sensitizers for High-Performance Dye-Sensitized
    Solar Cells," J. Am. Chem. Soc., 137 (2015) 4414-4423.
    [68] J. Ouyang, Q.F. Xu, C.W. Chu, Y. Yang, G. Li, J. Shinar, "On the
    mechanism of conductivity enhancement in poly (3,4-
    ethylenedioxythiophene): poly(styrene sulfonate) film through solvent
    treatment," J. Polymer, 45 (2004) 8443-8450.
    [69] F.C. Tang, J. Chang, F.C. Wu, H.L. Cheng, S.L.C. Hsu, J.S. Chen, W.Y.
    Chou, "Alignment of poly(3,4-ethylenedioxythiophene) polymer chains
    in photovoltaic cells by ultraviolet irradiation," J. Mater. Chem., 22
    (2012) 22409-22417.
    [70] C.H. Chiang, Z.L. Tseng, C.G. Wu, "Planar heterojunction perovskite
    /PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step
    spin-coating process," J. Mater. Chem. A, 2 (2014) 15897-15903.

    QR CODE
    :::