| 研究生: |
鄭育如 Yu-Ju Cheng |
|---|---|
| 論文名稱: |
鋼筋混凝土構件之敲擊應力波斷層掃描法 Impact Stress Wave Tomography of Reinforced Concrete Components |
| 指導教授: |
王仲宇
Chung-Yu Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 144 |
| 中文關鍵詞: | 斷層掃描 、鋼筋混凝土 、非破壞檢測 、線性走時內差法 |
| 外文關鍵詞: | tomography, reinforced concrete, ray tracing, traveltime |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
斷層掃描(Tomography)是利用外來不具破壞性的探測能量,通過待測物體得到量測反應,藉由反應結果對待測物剖面進行成像的技術。本論文選擇以震波斷層掃描中的級數展開法作為理論基礎,其理論可分為正算模式與反算模式兩大部分。正算模式使用格點方塊模型搭配二維線性走時內差(Linear Traveltime Interpolation method, LTI)法作為計算波行路徑的方法。而反算模式則選擇速度分布之聯立疊代重建(SIRT)法反求待測試體斷面的波速分布。兩者搭配結合成一個完整的二維斷層掃描法。
對於土木工程結構物而言,由於鋼筋混凝土的高度非均質性造成應力波在試體內部傳遞行為複雜,會影響檢測結果的正確性及準確性。因此本文藉由數值模擬與實驗室試驗的方式進行研究。數值模擬方面,二維斷層掃描程式可以成功計算出試體斷面的波速分布,順利地對試體進行顯像。實驗室試驗方面,使用敲擊鎚做為應力波發射源,並採用壓電式位移探頭作為觸發裝置。根據前人研究之經驗,利用鋼筋混凝土組成物(鋼筋、混凝土與孔洞)之波速皆有其固定範圍的概念改善顯像解析度,研究成果顯示,可有效地將試體內鋼筋位置與孔洞分布情形顯現出來。
Tomography is an inner image technique which generates a cross sectional picture of an object by utilizing the object’s response to the nondestructive, probing energy of an external source. In this thesis, the series expansion method of tomography was selected to develop a nondestructive evaluation technique for reinforced concrete components. In general, the tomography analysis contains two different procedures. The first one is the forward modeling for a given wave propagation structure. The forward modeling uses the ray tracing technique in order to simulate the curved ray path through the medium. The second is the inversion for updating the wave propagation structure. The ray tracing technique, linear traveltime interpolation (LTI) method which is selected to combine with simultaneous iterative reconstruction technique (SIRT) to develop a computational tomography (CT) scheme for reinforced concrete (RC) components.
Numerical simulations verify that the feasibility and performance of this 2-D CT scheme for RC components are acceptable. In order to make the image more clear and improve the image contrast of the CT calculation for RC component, taking that only three levels of wave speed in a RC component: steel bar, concrete and void.
In the laboratorial testing, an impact hammer is used to generate stress wave, and a piezoelectric displacement sensor is used as the trigger device for signal acquisition. Experimental results show that computed images also can identify the sizes and position of voids, the position of steel bar inside a simple RC component quite well.
[1]. Radon, J., “Uber die Bestimmung von funktionen durch ihre integralwerte langs gewisser Mannigfaltigkeiten”, Bu.Succhss. Akad. Leipzig, Math. Phys. K. 69, pp. 262 (1917).
[2]. Bois, P., LaPorte, M., LaVergne, M., and Thomas, G., “Well-to-well Seismic Measurements”, Geophysics, 37, pp. 471-480 (1972).
[3]. Gordon, R., “A tutorial on ART”, IEEE Transactions on Nuclear Science, Vol. NS-21, pp. 78-93 (1974).
[4]. Julian, B. R., and Gubblins, “Three-dimensional Seismic Ray Tracing”, J. Geophys., Vol. 43, pp. 95-113 (1977).
[5]. Dines, K. A., and Lytle, R. J., “Computerized Geophysical Tomography”, Proceedings of the IEEE, Vol. 67, No.7, pp. 1065-1073 (1979).
[6]. Pereyra, V., Lee, W. H. K., and Keller, H. B., “Solving Two-point Seismic-ray Tracing Problems in Heterogeneous Medium”, B.S.S.A., 70, 79-99 (1980).
[7]. Bishop, T. N., Bube, K. P., Cutler, R. T., Langan, R. T., Love, P. L., Resnick, J. R., Shuey, R. T., Spindler, D. A., and Wyld, H. W., “Tomographic Determination of Velocity and Depth in Laterally Varying Media”, Geophysics, Vol. 50, pp. 903-923 (1985).
[8]. Chiu, S. K. L., Kanasewich, E. R., and Phadke, S., “Three-dimensional Determination of Structure and Velocity by Seismic Tomography”, Geophysic, Vol. 51, pp. 1559-1571 (1986).
[9]. Saito, H., “Traveltimes and Raypaths of First Arrival Seismic Waves: Computation Method Based on Huygen’s Principle”, 59th Ann. Internat, Mtg., Soc. Expl. Geophysics, Expanded Abstracts, pp. 244-247 (1989).
[10]. Morse, T. J., “Efficient Seismic Ray Tracing Using Graph Theory”, 59th Ann. Internat, Mtg., Soc. Expl. Geophysics, Expanded Abstracts, pp. 1106-1108 (1989).
[11]. Bates, R. H. T., and McDonnel, M. J., “Image Restoration and Reconstruction”, Oxford Univ. Press., U.K. (1989).
[12]. Matsuoka, T., Asakawa, E., and Kawanaka, T., “Forward Modeling for Ray Tomography”, Proceedings of SEGJ, pp. 148-156 (1990).
[13]. Bishop, I., and Styles, P., “Seismic Tomographic Imaging of a Buried Concrete Target”, Geophysical Prospection, Vol. 38, pp. 169-188 (1990).
[14]. 陸明萬,彈性力學基礎,清華大學出版社,北京,第564-59頁(1990)。
[15]. Moser, T. J., “Shortest Path Calculation of Seismic Rays”, Geophysic, Vol. 56, pp. 59-67 (1991).
[16]. Clayton, C. R. I., Hope, V. S., and Howe, S. J., “Comment on Seismic Tomographic Imaging of A Buried Concrete Target”, Geophysical Prospecting, Vol. 39, pp. 711-718 (1991).
[17]. Phillips, W. S., and Fehler, M. C., “Traveltime Tomography: A Comparison of Popular Method”, Geophysic, Vol. 56, pp. 1639-1649 (1991).
[18]. Heiskanen, K. A., Rhim H. C., and Monteiro, “Computer Simulations of Limited Angle Tomography of Reinforced Concrete”, cement and Concrete Reasearch, Vol. 21, Iss.4, pp. 625-634 (1991).
[19]. Matsuoka, T., and Ezaka, T., “Ray Tracing Using Reciprocity”, Geophysic, Vol. 57, pp. 326-333 (1992).
[20]. Asakawa, E., and Kawanaka, T., “Seismic Ray Tracing Using Linear Traveltime Interpolation”, Geophysical Prospecting, Vol. 41, pp. 99-111 (1993).
[21]. Stewart, R. R., “Exploration Seismic Tomography: Fundamentals, Course Notes Series”, Society of Exploration Geophysicists, Oklahoma, U.S.A., Vol. 3, pp. 1-1~ pp. 2-53 (1993).
[22]. Lo, Tien-when, and Phillip, L. I., “Fundamentals of Seismic Tomography, Geophysical Monograph Series”, Society of Exploration Geophysicists, Oklahoma, U.S.A., No. 6, pp. 1-44 (1994).
[23]. Atkinson, R. H., Schuller, M. P., and Frank, D. A., “Acoustic Tomographic Studies of Reinforced Concrete”, Proceedings of 6th International Conference on Structural Faults and Repair-1995, pp. 39-42 (1995).
[24]. Zhao, P., “An Efficient Computer Program for Wavefront Calculation by the Finite-Difference Method”, Computers & Geosciences, Vol. 22, pp. 239-251 (1996).
[25]. Witte, O., Roth, M., and Müller, G., “An Efficient Computer Program for Wavefront Calculation by the Finite-Difference Method”, Computers & Geosciences, Vol. 22, pp. 239-251 (1996).
[26]. 楊文采,地球物理反演的理論與方法,地質出版社,北京,第1-14頁,第112-130頁(1997)。
[27]. Kamal, B., Ralph, E. K., and Christian, P., “Microwave Image – Location and Shape Reconstruction from Multifrequency Scattering Data”, IEEE, Vol. 45, NO.4 (1997).
[28]. 黃界超,「斷層掃描法在土木結構之應用評估」,碩士論文,國立中央大學土木工程研究所,桃園(1997)。
[29]. 紀聖威,「線性走時內差法於土木構件斷層掃描之應用」,碩士論文,國立中央大學土木工程研究所,桃園(1998)。
[30]. Davis, A. G., Ansari, F., Gaynor R. D., Lozen, K. M., Rowe, T. J., Caratin, H., Heidbrink, F. D., Malhotra, V. M., Simons, B. P., Carino, N. J., Hertlein, B. H., Olson, L. D., Sullivan, P. J., Choi, K., Hindo, K. R., Pessiki, S. P., Suprenant, B. A., Clemena, G. G., Huyke, R., Popovics, S., Teodoru, G., Cumming, N. A., Jenkins, R. S., Poston, R. W., Vogt, W. L., Dilly, R. L., Leeman, M. E., Read, P. H., Zoob, A. B., Dixon, D. E., Leshchinsky, A., Roddis, W. M. K., Draqunsky, B., Lew, H. S., Sansalone, M. J., “Nondestructive Test Methods for Evaluation of Concrete in Structures”, ACI, ACI228.2R-98 (1998).
[31]. Valle, S., Zanzi, L., and Rocca, F., “Radar Tomography for NDT: Comparison of Techniques”, Journaal of Applied Geophysics, Vol. 41, pp. 259-269 (1999).
[32]. Lanbo Liu, and Tieshuan Guo, “Seismic Non-destructive Tests on Reinforced Concrete Column of the Longtan Hoghway, GuanGxi, China”, Department of Geology and Geophysics, University of Connecticut Storrs (2000).
[33]. Thurber, C. H., and Kissling, E., Advances in Three-Time Calculations for 3-D Structures, “Advances in Seismic Event Location”, Klurwar Academic Publishers, pp. 71-99 (2000).
[34]. 黃家凌,「三維計算斷層掃描之射線追蹤正算模式」,碩士論文,國立中央大學土木工程研究所,桃園(2000)。
[35]. 高千平,「層析成像應用於透地雷達測勘之研究」,碩士論文,國立中央大學應用地質研究所,桃園(2001)。
[36]. 張益瑄,「三維線性走時內插法於土木構件斷層掃描之應用」,碩士論文,國立中央大學土木工程研究所,桃園(2001)。
[37]. Kamal, B., and Anton, G. T., “Modified Gradient Method and Modified Born Method for Solving a Two-dimensional Inverse Scattering”, Inverse Problem, 17, pp.1671-1688 (2001).
[38]. Cardarelli, E., and Nardis, D. E., “Seismic Refraction, Isotropic Anisotropic Seismic Tomography on An Ancient Monument(Antonino and Faustina Temple AD 141)”, Geophysical Prospecting, Vol. 49, pp. 228-240 (2001).
[39]. Multimedia Pandora Inc., “Road Radar Investigation by Non-Destruction Methods”, Geophysique GPR International Inc., (2001).
[40]. Anton, G. T., Kamal, B., Amelie, C. S. L., and Bastiaan P. de Hon, “Theoretical and Computational Aspects of 2-D Inverse profiling”, IEEE, Vol. 39, NO. 6, (2001).
[41]. Fratta, D., and Lestelle, “Testing a Concrete Specimen by Non-Destruction Methods”, Geophysique GPR International Inc., (2002).
[42]. 楊政穎,「鋼筋混凝土構件斷層掃描之顯像處理」,碩士論文,國立中央大學土木工程研究所,桃園(2003)。
[43]. 裴廣智,徐鴻發,林東威,“透地雷達檢測斷層影像處理技術之工程應用及實例”,The 12th TWNDT conference 2004, 第603-610頁(2004)。
[44]. 陳志賢,「RC構件之三維斷層掃描理論與數值驗證」,碩士論文,國立中央大學土木工程研究所,桃園(2005)。
[45]. Röhm, A., Bijwarrd, H., Sparkman, W., and Trampert J., “Effect of arrival time errors on traveltime tomography”, Geophys. J. Int., (2000).
[46]. Martin, J., Broughton, K. J., Giannopolous, A., Hardy, M. S. A., Forde, M. C., “Ultrasonic tomography of grouted duct post-tensioned reinforced concrete bridge beams”, NDT&E International, Vol. 34, pp. 107-113 (2001).
[47]. Zack, G. W., Rogers, W. E., and Latt, S. A., “Automatic-measurement of sister chromatid exchange frequency”, Journal of Histochemistry & Cytochemistry, Vol. 25, pp. 741-753 (1977).