| 研究生: |
林威佐 Wei-Tso Lin |
|---|---|
| 論文名稱: |
以偵測任務及系統效能評估找尋多針孔微單光子放射電腦斷層掃描系統之最佳化配置 Configuration Optimization for Multi-pinhole Micro-SPECT Systems by Detection Tasks and System Performance Evaluations |
| 指導教授: |
陳怡君
Yi-Chun Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 單光子放射電腦斷層掃描 、針孔準直儀 、偵測任務 、系統空間解析度 、系統靈敏度 |
| 外文關鍵詞: | Single Photon Emission Computed Tomography, Pinhole Collimator, Detection Task, System Spatial Resolution, System Sensitivity |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今高解析度針孔單光子放射電腦斷層掃描系統廣為用於偵測小動物模型,但由於單針孔準直儀接收角度有限致使靈敏度太低,因此本研究針對實驗室建構之單光子放射電腦斷層掃描系統引入多針孔準直儀,以提高系統之靈敏度。
設計多針孔準直儀的過程,首先透過選定 FOV 範圍及最大化使用偵測器面積的方式訂定系統放大率,再藉由共線模型預估投影影像並限制其範圍及多工效應條件限制的方式選定針孔數量及針孔擺放位置,最後以幾何數學模型初估系統解析度及靈敏度來訂定針孔大小,藉由以上的步驟初步得到六組適合的針孔準直儀設置及系統放大率;接下來再透過蒙地卡羅模型軟體 GATE 模擬這六組針孔準直儀,獲取影像系統矩陣;最後以此影像系統矩陣進行偵測任務,比較這六組針孔準直儀的影像品質,並使用傅立葉串擾矩陣計算其空間解析度、重建熱桿假體影像分析空間解析度及計算系統靈敏度,比較這六組針孔準直儀的系統性能。藉由評估結果,最終選用系統放大率 1.52 , 多工效應 20% 之四個直徑 0.6 mm,對著物空間中心傾斜放置的多針孔準直儀,為我們系統最佳化之多針孔準直儀,搭配偵測器可用面積為 49 x 49 mm2 ,所得最佳系統解析度為 1 mm,靈敏度為$2.2 x 10-4。
High resolution pinhole-SPECT systems are generally applied to small-animal nuclear medicine imaging, but the small acceptant solid angle of the single pinhole will limit the sensitivity. Therefore, multi-pinhole apertures are introduced into the micro-SPECT system developed in our group to raise the sensitivity. This study aims to design the multi-pinhole configuration that optimizes the spatial resolution and the sensitivity simultaneously.
The design procedure starts from deciding the multi-pinhole pattern. First, we choose the system magnification based on the predetermined field-of-view (FOV) and the criterion of using maximum detector area. Second, we choose the number of pinholes and the pinhole locations by setting an upper bound for the multiplexing factor and avoiding truncated projections. Third, we choose the pinhole size to have comparable spatial resolution among candidate pinhole patterns, where the sensitivity and resolution are preliminary evaluated by analytical models. After implementing the procedure, we obtain six single- and multi-pinhole patterns and their corresponding system magnifications.
The next step is to model the designed pinhole patterns in GATE Monte-Carlo simulations to generate the imaging system matrices. The final step is to compare the Area-Under-Curve (AUC) values, the sensitivities and the spatial resolutions of the designed pinhole patterns. The AUC values are evaluated with their respective imaging system matrices through signal detection tasks. The sensitivities are calculated during the generation of the system matrices as the ratio of detected counts divided by the number of emitted photons. The spatial resolutions are calculated by the Fourier crosstalk approach and visualized by reconstruction images of a hot-rod phantom. According to the resulting AUC, sensitivity and spatial resolution, the four-pinhole pattern with 20% multiplexing, 0.6-mm pinhole diameter, and 1.52 times system magnification is the optimized configuration for our micro-SPECT system with a camera face of 49 × 49 mm2 and a spherical FOV of 14-mm diameter. The corresponding system resolution is 1.0 mm, and the sensitivity is 2.2 ×10-4.
[1] S. Batzoglou, L. Pachter, J. P. Mesirov, B. Berger and E. S. Lander, “Human and Mouse Gene Structure: Comparative Analysis and Application to Exon Prediction," Genome Res., vol. 10, no. 7, pp.950-958, 2000.
[2] K. Kasischke, M. Büchner, A. C. Ludolph and M. W. Riepe, “Nuclear Shrinkage in Live Mouse Hippocampal Slices,” Acta Neuropathol, vol. 101, no. 5, pp.483-490, 2001.
[3] A. Rahmim and H. Zaidi, “PET Versus SPECT: Strengths, Limitations and Challenges,” Nucl. Med. Commun., vol. 29, no. 3, pp.193-207, 2008.
[4] M. N. Wernick and J. N. Arsvold, The Fundamentals of PET and SPECT, ELSEVIER Academic Press, 2004.
[5] N. U. Schramm, G. Ebel, U. Engeland, T. Schurrat, M. Behe, and T. M. Behr, “High-Resolution SPECT Using Multipinhole Collimation," IEEE Trans. Nucl. Sci., vol. 50, no. 3, pp. 315-320, 2003.
[6] Available : http://www.gammamedica.com/
[7] A. B. Hwang, B. L. Franc, G. T. Gullberg and B. H. Hasegawa, “Assessment of The Sources of Error Affecting The Quantitative Accuracy of SPECT Imaging in Small Animals," Phys. Med. Biol., vol. 53, no. 9, pp. 2233-2252, 2008.
[8] Available : http://www.bioscan.com
[9] F. J. Beekman, F. van der Have, B. Vastenhouw, A. J.A. van der Linden, P. P. van Rijk, J. P. H. Burbach, and M. P. Smidt, “U-SPECT-I: A Novel System for Submillimeter- Resolution Tomography with Radiolabeled Molecules in Mice,” J. Nucl. Med., vol. 46, no. 7, pp. 1194-1200, 2005.
[10]
P. Nillius and M. Danielsson, “Theoretical Bounds and System Design for Multipinhole SPECT," IEEE Trans. Med. Imag., vol. 29, no. 7, pp. 1390-1400, 2010 .
[11] R. Accorsi and S. D. Metzler, “Analytic determination of the resolution-equivalent effective diameter of a pinhole collimator,” IEEE Trans. Med. Imag., vol. 23, no. 6, pp. 750–763, 2004.
[12] S. D. Metzler, J. E. Bowsher, M. F. Smith, and R. J. Jaszczak, “Analytic determination of pinhole collimator sensitivity with penetration,” IEEE Trans. Med. Imag., vol. 20, no. 8, pp. 730–741, 2001
[13] G. L. Zeng, “A Skew-Slit Collimator for Small-Animal SPECT," J. Nucl. Med., vol. 36, no. 4, pp. 207-212, 2008.
[14] Z. Cao, G. Bal, R. Accorsi, and P. D. Acton, “Optimal Number of Pinholes in Multi-Pinhole SPECT for Mouse Brain Imaging - A Simulation Study," Phys. Med. Biol., vol. 50, no. 19, pp. 4609–4624, 2005.
[15] K. A. Gross, Assessing and Optimizing Pinhole SPECT Imaging Systems for Detection Tasks, Ph. D dissertation, University of Arizona, 2006.
[16] K. Deprez, L. R V Pato, S. Vandenberghe, and R. V. Holen, “Characterization of A SPECT Pinhole Collimator for Optimal Detector Usage (The Lofthole)," Phys. Med. Biol., vol. 58, pp. 859-885, 2013.
[17] G. S. P. Mok, Y. Wang, and B. M. W. Tsui, “Quantification of the Multiplexing Effects in Multi-Pinhole Small Animal SPECT: A Simulation Study," IEEE Trans. Nucl. Sci., vol. 56, no. 5, pp. 2636-2643, 2009.
[18] H. H. Barrett and K. J. Myers, Foundations of Image Science, Wiley-Interscience, Hoboken, NJ, pp.801-1000, 2004.
[19] J. Yao and H. H. Barrett, “Predicting Human Performance by A Channelized Hotelling Observer Model," SPIE Math. Methods Med. Imag, vol. 1768, pp. 161-168, 1992.
[20] C. K. Abbey and H. H. Barrett, “Human and Model-Observer Performance in Ramp-Spectrum Noise: Effects of Regularization and Object Variability." J. Opt. Soc. Am. A., vol. 18, no. 3, pp. 473-488. 2001.
[21] L. A. Shepp and Y. Vardi, “Maximum Likelihood Reconstruction for Emission Tomography," IEEE Trans. Med. Imag., vol. 1, no. 2, pp.113-122, 1982
[22] H. M. Hudson and R. S. Larkin, “Accelerated Image Reconstruction Using Ordered Subsets of Projection Data," IEEE Trans. Med. Imag., vol. 13, no. 4, pp.601-609, 1994.
[23] G. S. P. Mok, Design and Development of A Multi Pinhole Collimator for High Resolution and High Efficiency SPECT Imaging of Atherosclerotic Plaques in ApoE -/- Mice , Ph.D dissertation, University of Johns Hopkins, 2009.
[24] G. S. P. Mok, B. M. W. Tsui, F. J. Beekman, “The Effects of Object Activity Distribution on Multiplexing Multi-pinhole SPECT," Phys. Med. Biol., vol. 56, no. 8, pp. 2635-2650, 2011.
[25] W. C. J. Hunter, Modeling Stochastic Processes in Gamma Ray Imaging Detectors and Evaluation of a Multi Anode PMT Scintillation Camera for Use with Maximum-Likelihood Estimation Methods, Ph.D dissertation, University of Arizona, 2007.
[26] G. Santin, D. Strul, D. Lazaro, L. Simon, M. Krieguer, M. Vieira Martins, V. Breton, and C. Morel, “GATE: A Geant4-Based Simulation Platform for PET and SPECT Integrating Movement and Time Management ," IEEE Trans. Nucl. Sci., vol. 50, no. 5, pp. 1516-1521, 2003.
[27] S. Agostinelli et al., “GEANT4 - a simulation toolkit," Nucl. Instr. Meth., vol. 506, no. 3, pp. 250-303, 2003.
[28] Available : http://wiki.opengatecollaboration.org/
[29] M. W. Lee and Y. C. Chen, “ Rapid Construction of Pinhole SPECT Imaging System Matrices by Gaussian Interpolation Method Combined with Geometric Parameter Estimations," IEEE Nucl. Sci. Symp. Conf. Rec. 2011, pp.2664-2667, 2011.
[30] Y. Wang and B. M. W. Tsui, “Pinhole SPECT with Different Data Acquisition Geometries: Usefulness of Unified Projection Operators in Homogeneous Coordinates," IEEE Trans. Med. Imag., vol. 26, no. 3, pp. 298-308, 2007.
[31] S. Park, H. H. Barrett, E. Clarkson, M. A. Kupinski, and K. J. Myers, “Channelized-Ideal Observer Using Laguerre–Gauss Channels in Detection Tasks Involving Non-Gaussian Distributed Lumpy Backgrounds and Gaussian Signal," J. Opt. Soc. Am. A, vol. 24, no. 12,pp. B136-B150, 2007.
[32] H. Kim, L. R. Furenlid, M. J. Crawford, D. W. Wilson, H. B. Barber, T. E. Peterson, W. C. J. Hunter, Z. Liu, J. M. Woolfenden, and H. H. Barrett, “SemiSPECT: A Small-Animal Single-Photon Emission Computed Tomography (SPECT) Imager Based on Eight Cadmium Zinc Telluride (CZT) Detector Arrays," Med. Phys., vol. 33, no. 2, pp. 465-474, 2006.
[33] Y. C. Chen, System Calibration and Image Reconstruction for a New Small-Animal SPECT System, Ph.D dissertation, University of Arizona, 2006.
[34] H. H. Barrett and K. J. Myers, Foundations of Image Science, Wiley-Interscience, Hoboken, NJ, pp. 205-206, 2004.
[35] H. H. Hsieh, I. T. Hsiao and K. J. Lin, “Analytic Calculation of Multi-Pinhole Collimator Sensitivity with Tilted Pinholes," IEEE Nucl. Sci. Symp. Conf. Rec. 2008, pp.4724-4727, 2008.
[36] R. J. Jaszczak, J. Li, H. Wang, M. R. Zalutsky and R. E. Coleman, “Pinhole Collimation for Ultra-High-Resolution, Small-Field-of-View SPECT,” Phys. Med. Biol., vol. 39, no. 3, pp.425-437, 1994.
\end{thebibliography}