跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蘇正中
zhen-Cho Shu
論文名稱: 傾斜互層地層之承載力分析
指導教授: 田永銘
Yong-Ming Tien
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 90
語文別: 中文
論文頁數: 149
中文關鍵詞: 互層地層承載力基礎位置互層傾角互層厚度週寬比FLAC
外文關鍵詞: interlayered formation, bearing capacity, position of footing, interlayered inclined angle, thickness of interlayer, cycle-widthratio, FLAC
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 互層地層為兩種大地材料交互堆疊而成的層狀地質構造,常見於台
    灣、西部麓山帶。影響互層地層承載力的因素甚多,為了釐清互層地層的
    承載行為,本文擬以「傾斜互層地層之承載力分析」為題進行研究。
    以傾斜互層地層作為前提,針對互層地層的三個主要參數進行研究:
    1.基礎位置、2.互層傾角、3.互層厚度,研究這三個參數對互層地層承載力
    的影響。透過FLAC 程式的協助進行數值模擬分析,並將分析結果進行討
    論。
    研究結果顯示,對於基礎位置而言,當週寬比(週期互層厚度與基礎
    寬度之比值)約小於1 時,在同一互層傾角條件下,基礎不論置於互層地
    層地表上之何處,其承載力都會非常接近、相差不大。這是因為此時的基
    礎寬度約足以涵蓋住一整個互層厚度,使兩種互層材料個別的強度特性被
    綜合所致;而當週寬比約大於1 時,在同一互層傾角條件下,此時隨著基
    礎位置的改變,其承載力已開始會出現週期性的起伏變化。這是因為此時
    基礎寬度已無法涵蓋住一整個互層厚度,因此基礎放置的位置與承載力之
    大小關係相當密切。對於互層傾角而言,當週寬比約小於1 時,隨著互層
    傾角的增加,各基礎位置的承載力亦會跟著增加;當週寬比約大於1 時,
    隨著互層傾角的增加,各基礎位置的承載力變化將變得更複雜。整體而
    言,隨著互層厚度增大,基礎位置的週期承載特性會越明顯,互層傾角的
    承載行為會越複雜。


    Interlayered formation is a kind of layered formations formed by two
    geological materials storing up mutually. Three major parameters will affect the
    bearing capacity of interlayered formation, including positions of footing,
    interlayered inclined angle, and thickness of each interlayer.
    In this thesis, the bearing capacity of inclined interlayered formation will
    be analyzed by using FLAC program to find how the three parameters could
    affect it.
    The FLAC analysis results as follows. With regard to positions of footing,
    if the cycle-width ratio is smaller than 1, as long as in the same interlayered
    inclined angle, the position of footing won’t affect the bearing capacity. If the
    cycle-width ratio is larger than 1, the bearing capacity will change periodically
    along with the movement of footing. With regard to interlayered inclined angle,
    if the cycle-width ratio is smaller than 1, the bearing capacity of any footing
    position will increase while interlayered inclined angle increases. If the
    cycle-width ratio is larger than 1, the bearing capacity behavior of any footing
    position will be more complex. In conclusion, if thickness of each interlayer is
    increasing, the cycling bearing capacity characteristic of different positions of
    footing will become much more obvious, and the bearing capacity behavior of
    different interlayered inclined angle will become complex

    中文摘要.....................................................................................I 英文摘要................................................................................... II 誌謝.......................................................................................... III 目錄..........................................................................................IV 圖目錄.....................................................................................VII 表目錄....................................................................................... X 第一章緒論............................................................................ 1 1.1 研究動機........................................................................................1 1.2 研究方法........................................................................................1 1.3 研究規劃........................................................................................2 1.4 本文內容........................................................................................3 第二章文獻回顧..................................................................... 5 2.1 基礎承載理論................................................................... 5 2.1.1 一般基礎承載理論..................................................................... 5 2.1.2 層狀地層之基礎承載理論....................................................... 17 2.1.3 岩石基礎承載理論................................................................... 27 2.2FLAC 應用軟體介紹....................................................... 31 2.2.1 理論背景................................................................................... 31 2.2.2 數值分析流程........................................................................... 37 IV 第三章傾斜互層地層數值分析的前置工作....................... 39 3.1 基礎承載力輸入檔的編寫................................................ 39 3.1.1 輸入檔內容說明....................................................................... 40 3.1.2 數值分析結果呈現................................................................... 49 3.2 基礎承載力輸入檔的參數研究......................................... 51 3.2.1 對稱性問題............................................................................... 55 3.2.2 網格大小與基礎底面網格數的探討....................................... 57 3.2.3 模擬自重平衡的探討............................................................... 60 3.2.4 基礎下移速度的探討............................................................... 72 3.2.5servo fish function 的探討......................................................... 81 3.2.6 分析域邊界效應探討............................................................... 89 3.2.7 基礎寬度尺寸效應探討........................................................... 96 第四章傾斜互層地層數值分析之研究過程..................... 104 4.1 砂土在黏土之上的層狀地層承載實驗與數值分析之比較. 104 4.1.1 黃哲君承載力離心模型試驗說明......................................... 104 4.1.2 數值分析結果與實驗結果比較............................................. 106 4.1.3 反算分析................................................................................. 108 4.2 互層地層分析之研究規劃.............................................. 112 4.2.1 互層地層之主要參數............................................................. 112 4.2.2 互層地層承載力分析之參數研究......................................... 114 4.3 互層地層分析之過程說明.............................................. 117 4.3.1 互層地層網格的建立............................................................. 117 4.3.2 互層地層分析域尺寸決定..................................................... 123 4.3.3 互層地層之基礎寬度決定..................................................... 123 V 4.3.4.互層地層研究之純黏土與純砂土承載力說明..................... 124 4.3.5 互層地層模型......................................................................... 125 4.4 互層地層分析之結果討論.............................................. 127 第五章結論與建議............................................................. 141 5.1 結論............................................................................. 141 5.2 建議............................................................................. 144 參考文獻................................................................................ 145 附錄A 互層地層之基礎承載力表....................................... 148

    1. 王乙翕,「層狀岩盤之承載力」,碩士論文,國立中央大學土木工程研
    究所,中壢(2000)。
    2. 黃哲君,「層狀土壤之基礎承載力」,碩士論文,國立中央大學土木工
    程研究所,中壢(1998)。
    3. 梁至仁,「層狀地層之承載力」,碩士論文,國立中央大學土木工程研
    究所,中壢(1999)。
    4. 鄭富書,「軟弱岩盤承載行為研究(Ⅰ)」,行政院國家科學委員會專題
    研究計畫成果報告,NSC83-0410-E-002-004 (1994)。
    5. 鄭富書,「軟弱岩盤承載行為研究(Ⅱ)」,行政院國家科學委員會專題
    研究計畫成果報告,NSC84-2211-E-002-053 (1995)。
    6. Balla, A., “Bearing Capacity of Foundations,” Journal of the Soil
    Mechanics and Foundations Division, Proceedings, ASCE, Vol. 88, No.
    SM5, pp.13~34 (1962).
    7. Burd, H. J. and S. Frydman, “Bearing Capacity of Plane-Strain Footings on
    Layered Soils,” Can. Geotech. J., Vol. 34, pp. 241~253 (1997).
    8. Chen, W. F. and D. C. Drucker, “Bearing Capacity of Concrete Blocks or
    Rock,” Journal of the Soil Mechanics and Foundations Division,
    Proceedings, ASCE, Vol. 95, No. EM2, pp.955~978 (1969).
    9. Chen, W. F., Limit analysis and soil plasticity, Elsevier, Amsterdam (1975).
    10. Meyerhof, G. G., “The Ultimate Bearing Capacity of Foundation,” Geotechnique,
    Vol. 2, pp.301~332 (1951).
    11. Chen, W. F. and X. L. Liu, Limit analysis in soil mechanics, Elsevier,
    Amsterdam (1990).
    12. FLAC, Fast Lagrangian Analysis of Continua, Volume 1: User’s Manual,
    Itasca Consulting Group Inc., USA (1993).
    13. FLAC, Fast Lagrangian Analysis of Continua, Volume 2: Verification
    Problems and Example Applications, Itasca Consulting Group Inc., USA
    (1993).
    14. FLAC, Fast Lagrangian Analysis of Continua, Volume 3: Appendices,
    Itasca Consulting Group Inc., USA (1993).
    15. Hanna, A. M. and G. G. Meyerhof, “Design Charts for Ultimate Bearing
    Capacity of Foundations on Sand overlying Soft Clay,” Can. Geotech. J.,
    Vol. 17, pp.300~303 (1980).
    16. Huang, C. C. and F. Y. Menq, “Deep-Footing and Wide-Slab Effects in
    Reinforced Sandy Ground,” Journal of Geotechnical and
    Geoenvironmental Engineering, ASCE, Vol. 123, No. 1, pp.30~36 (1997).
    17. Kraft, L. M. and S. C. Helfrich, “Bearing Capacity of Shallow Footing,
    Sand over Clay,” Can. Geotech. J., Vol. 20, pp.182~185 (1983).
    18. Meyerhof, G. G., “Ultimate Bearing Capacity of Footings on Sand Layer
    overlying Clay,” Can. Geotech. J., Vol. 11, No. 2, pp.223~229 (1974).
    19. Madhav, M. R. and J. S. N. Sharma, “Bearing Capacity of Clay Overlain by
    Stiff Soil,” Journal of Geotechnical Engineering, ASCE, Vol. 117, No. 12,
    pp.1941~1948 (1991).
    20. Satyanarayana, B. and R. K. Garg, “Bearing Capacity of Footings on
    Layered c-φ Soils,” Journal of the Geotechnical Engineering Division,
    Proceedings, ASCE, Vol. 106, No. GT7, pp.819~824 (1980).
    21. Terzaghi, K., Theoretical Soil Mechanics, Wiley, New York (1943).
    22. Valsangkar, A. J. and G. G. Meyerhof, “Experimental Study of Punching
    Coefficients and Shape Factor for Two-Layered Soils,” Can. Geotech. J.,
    Vol. 16, pp.802~805 (1979).

    QR CODE
    :::