| 研究生: |
蘇正中 zhen-Cho Shu |
|---|---|
| 論文名稱: |
傾斜互層地層之承載力分析 |
| 指導教授: |
田永銘
Yong-Ming Tien |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 149 |
| 中文關鍵詞: | 互層地層 、承載力 、基礎位置 、互層傾角 、互層厚度 、週寬比 、FLAC |
| 外文關鍵詞: | interlayered formation, bearing capacity, position of footing, interlayered inclined angle, thickness of interlayer, cycle-widthratio, FLAC |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
互層地層為兩種大地材料交互堆疊而成的層狀地質構造,常見於台
灣、西部麓山帶。影響互層地層承載力的因素甚多,為了釐清互層地層的
承載行為,本文擬以「傾斜互層地層之承載力分析」為題進行研究。
以傾斜互層地層作為前提,針對互層地層的三個主要參數進行研究:
1.基礎位置、2.互層傾角、3.互層厚度,研究這三個參數對互層地層承載力
的影響。透過FLAC 程式的協助進行數值模擬分析,並將分析結果進行討
論。
研究結果顯示,對於基礎位置而言,當週寬比(週期互層厚度與基礎
寬度之比值)約小於1 時,在同一互層傾角條件下,基礎不論置於互層地
層地表上之何處,其承載力都會非常接近、相差不大。這是因為此時的基
礎寬度約足以涵蓋住一整個互層厚度,使兩種互層材料個別的強度特性被
綜合所致;而當週寬比約大於1 時,在同一互層傾角條件下,此時隨著基
礎位置的改變,其承載力已開始會出現週期性的起伏變化。這是因為此時
基礎寬度已無法涵蓋住一整個互層厚度,因此基礎放置的位置與承載力之
大小關係相當密切。對於互層傾角而言,當週寬比約小於1 時,隨著互層
傾角的增加,各基礎位置的承載力亦會跟著增加;當週寬比約大於1 時,
隨著互層傾角的增加,各基礎位置的承載力變化將變得更複雜。整體而
言,隨著互層厚度增大,基礎位置的週期承載特性會越明顯,互層傾角的
承載行為會越複雜。
Interlayered formation is a kind of layered formations formed by two
geological materials storing up mutually. Three major parameters will affect the
bearing capacity of interlayered formation, including positions of footing,
interlayered inclined angle, and thickness of each interlayer.
In this thesis, the bearing capacity of inclined interlayered formation will
be analyzed by using FLAC program to find how the three parameters could
affect it.
The FLAC analysis results as follows. With regard to positions of footing,
if the cycle-width ratio is smaller than 1, as long as in the same interlayered
inclined angle, the position of footing won’t affect the bearing capacity. If the
cycle-width ratio is larger than 1, the bearing capacity will change periodically
along with the movement of footing. With regard to interlayered inclined angle,
if the cycle-width ratio is smaller than 1, the bearing capacity of any footing
position will increase while interlayered inclined angle increases. If the
cycle-width ratio is larger than 1, the bearing capacity behavior of any footing
position will be more complex. In conclusion, if thickness of each interlayer is
increasing, the cycling bearing capacity characteristic of different positions of
footing will become much more obvious, and the bearing capacity behavior of
different interlayered inclined angle will become complex
1. 王乙翕,「層狀岩盤之承載力」,碩士論文,國立中央大學土木工程研
究所,中壢(2000)。
2. 黃哲君,「層狀土壤之基礎承載力」,碩士論文,國立中央大學土木工
程研究所,中壢(1998)。
3. 梁至仁,「層狀地層之承載力」,碩士論文,國立中央大學土木工程研
究所,中壢(1999)。
4. 鄭富書,「軟弱岩盤承載行為研究(Ⅰ)」,行政院國家科學委員會專題
研究計畫成果報告,NSC83-0410-E-002-004 (1994)。
5. 鄭富書,「軟弱岩盤承載行為研究(Ⅱ)」,行政院國家科學委員會專題
研究計畫成果報告,NSC84-2211-E-002-053 (1995)。
6. Balla, A., “Bearing Capacity of Foundations,” Journal of the Soil
Mechanics and Foundations Division, Proceedings, ASCE, Vol. 88, No.
SM5, pp.13~34 (1962).
7. Burd, H. J. and S. Frydman, “Bearing Capacity of Plane-Strain Footings on
Layered Soils,” Can. Geotech. J., Vol. 34, pp. 241~253 (1997).
8. Chen, W. F. and D. C. Drucker, “Bearing Capacity of Concrete Blocks or
Rock,” Journal of the Soil Mechanics and Foundations Division,
Proceedings, ASCE, Vol. 95, No. EM2, pp.955~978 (1969).
9. Chen, W. F., Limit analysis and soil plasticity, Elsevier, Amsterdam (1975).
10. Meyerhof, G. G., “The Ultimate Bearing Capacity of Foundation,” Geotechnique,
Vol. 2, pp.301~332 (1951).
11. Chen, W. F. and X. L. Liu, Limit analysis in soil mechanics, Elsevier,
Amsterdam (1990).
12. FLAC, Fast Lagrangian Analysis of Continua, Volume 1: User’s Manual,
Itasca Consulting Group Inc., USA (1993).
13. FLAC, Fast Lagrangian Analysis of Continua, Volume 2: Verification
Problems and Example Applications, Itasca Consulting Group Inc., USA
(1993).
14. FLAC, Fast Lagrangian Analysis of Continua, Volume 3: Appendices,
Itasca Consulting Group Inc., USA (1993).
15. Hanna, A. M. and G. G. Meyerhof, “Design Charts for Ultimate Bearing
Capacity of Foundations on Sand overlying Soft Clay,” Can. Geotech. J.,
Vol. 17, pp.300~303 (1980).
16. Huang, C. C. and F. Y. Menq, “Deep-Footing and Wide-Slab Effects in
Reinforced Sandy Ground,” Journal of Geotechnical and
Geoenvironmental Engineering, ASCE, Vol. 123, No. 1, pp.30~36 (1997).
17. Kraft, L. M. and S. C. Helfrich, “Bearing Capacity of Shallow Footing,
Sand over Clay,” Can. Geotech. J., Vol. 20, pp.182~185 (1983).
18. Meyerhof, G. G., “Ultimate Bearing Capacity of Footings on Sand Layer
overlying Clay,” Can. Geotech. J., Vol. 11, No. 2, pp.223~229 (1974).
19. Madhav, M. R. and J. S. N. Sharma, “Bearing Capacity of Clay Overlain by
Stiff Soil,” Journal of Geotechnical Engineering, ASCE, Vol. 117, No. 12,
pp.1941~1948 (1991).
20. Satyanarayana, B. and R. K. Garg, “Bearing Capacity of Footings on
Layered c-φ Soils,” Journal of the Geotechnical Engineering Division,
Proceedings, ASCE, Vol. 106, No. GT7, pp.819~824 (1980).
21. Terzaghi, K., Theoretical Soil Mechanics, Wiley, New York (1943).
22. Valsangkar, A. J. and G. G. Meyerhof, “Experimental Study of Punching
Coefficients and Shape Factor for Two-Layered Soils,” Can. Geotech. J.,
Vol. 16, pp.802~805 (1979).