跳到主要內容

簡易檢索 / 詳目顯示

研究生: 江文新
Wen-Xin Jiang
論文名稱: 金屬粉末射出成型之參數優化模流分析
指導教授: 鍾志昂
Chung, Chih-Ang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 96
中文關鍵詞: 金屬粉末射出成型翹曲參數優化DOEANOVAMoldex3D
外文關鍵詞: Metal injection molding, Warpage, Parameter optimization, DOE, ANOVA, Moldex3D
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬粉末射出成型(MIM)的製程包括金屬喂料混和、喂料射出、保壓、冷卻、頂出脫模、脫脂及燒結工藝,MIM需要遵循這些步驟流程才能製作出金屬零件。現今產業的競爭,迫使射出成型的產品需要高品質、更快速、更便宜的生產零件,並盡可能地避免缺陷,例如最小化翹曲、避免裂痕等,因此射出成型的參數對產品的影響需要更深入的探討。在射出成型中,模流分析軟體可以滿足探討射出成型參數影響品質特性的這個需求,Moldex3D為商業模流分析軟體,利用三維模擬分析技術解決射出成型的問題,並且結合參數優化的方法,例如田口法及反應曲面法,可以更有效率的節省時間及金錢上的成本。
    本研究利用Moldex3D對隨形水路加隔板水路鎖類零件的MIM製程進行模流分析,經由探討參數對於翹曲的影響,並將參數優化以最小化產品的翹曲。產品的網格建立是利用Rhinoceros 3D進行網格建模,並將其進行網格獨立性測試,挑選出最佳的網格作為後續參數優化的分析。參數優化的分析中挑選出的控制因子,分別為保壓壓力四階段(保壓壓力1、保壓壓力2、保壓壓力3、保壓壓力4)、保壓時間四階段(保壓時間1、保壓時間2、保壓時間3、保壓時間4) 、喂料溫度、模具溫度及充填流率,共11個控制因子進行分析。利用參數優化的方法,田口法配合方差分析(ANOVA)篩選並優化對翹曲影響顯著的控制因子,田口法優化後,利用一半法則得到三個對翹曲影響最顯著的控制因子,分別為喂料溫度、模具溫度及保壓壓力1。後續結合反應曲面法將這三個控制因子更進一步優化分析,藉由這些因子的優化,本研究將鎖零件的翹曲降低了27.7%,達到參數優化並最小化翹曲的目的。最終本研究的結果可以作為工程師或研究人員一套參數優化流程的參考。
    關鍵字:金屬粉末射出成型、翹曲、參數優化、DOE、ANOVA、Moldex3D


    In this study, Moldex3D was used to perform mold flow analysis on the metal injection molding process of conformal cooling channel in lock parts. By discussing the influence of parameters on warpage, the parameters were optimized to minimize product warpage. Rhinoceros 3D, a CAD software, was used for the generation and analysis of the model grid. A grid independence test was performed before conducting the mold flow simulation for subsequent parameter optimization analysis. The control factors selected in the in the study of parameter optimization included the four stages of analysis of the four stages of packing pressure, the four stages of packing time, material temperature, mold temperature, and injection flow rate, which amounts to 11 control factors. The Taguchi method combined with the Analysis of Variance (ANOVA) was adopted to screen the control factors that have significant effects on warpage. Using the half rule, we obtained the three most essential control factors for warpage, which were the material temperature, mold temperature, and the first phase packing pressure. The subsequent optimization and analysis of these three control factors were performed using the response surface method, which obtained the warpage reduction of the lock parts by 27.7%. The results can serve as a reference for engineers or researchers in the community of mold flow analysis and optimization.
    Keywords: Metal injection molding, Warpage, Parameter optimization, DOE, ANOVA,
    Moldex3D

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究目的與方法 6 1.3.1 研究目的 6 1.3.2 研究方法 7 1.4 論文架構 10 第二章 MIM鎖零件模流分析 11 2.1 Moldex3D模流分析與射出成型技術 11 2.1.1 Moldex3D模流分析軟體 11 2.1.2 射出成型技術 11 2.1.3 翹曲變形 13 2.2 一模四穴鎖類零件與冷卻水路設計 14 2.3 成型材料特性 16 2.4 網格建立 20 2.5 Moldex3D R17成型條件設置 29 2.6 網格獨立性測試 35 第三章 田口方法參數優化 39 3.1第一階段篩選因子 39 3.1.1 定義品質特性 39 3.1.2 田口直交表配置 40 3.1.3 信噪比(S/N)分析 42 3.1.4 S/N效應表與效應圖 45 3.2第二階段參數優化 47 3.2.1 變異數分析(ANOVA) 52 3.2.2 參數優化結果驗證 56 第四章 反應曲面法參數優化 59 4.1 反應曲面設計 60 4.2 望想函數 66 4.3 反應曲面法優化流程 68 第五章 結果與討論 77 第六章 結論與未來展望 81 6.1 結論 81 6.2 未來展望 83 參考文獻 84

    [1] Hu, S. C., & Hwang, K. S. (2000). Dilatometric analysis of thermal debinding of injection moulded iron compacts. Powder metallurgy, 43(3), 239-244.
    [2] German, R. M. (1997). Injection molding of metals and ceramics. Metal powder industries federation, 3.
    [3] Heaney, D. F. (Ed.). (2018). Handbook of metal injection molding. Woodhead Publishing.
    [4] Huang, M.C., Tai, C.C. (2001). The effective factors in The Warpage Problem of an injection-molded part with a thin shell feature. J Mater Process Tech 2, 110, 1-9.
    [5] Noordin, M. Y., Venkatesh, V. C., Sharif, S., Elting, S., & Abdullah, A. (2004). Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel. Journal of materials processing technology, 145(1), 46-58.
    [6] Jamaludin, K. R., Muhamad, N., Rahman, M. N. A., & Yulis, S. Analysis of Variance on the Metal Injection molding parameters using a bimodal particle size distribution feedstock.
    [7] Kurtaran, H., & Erzurumlu, T. (2006). Efficient warpage optimization of thin shell plastic parts using response surface methodology and genetic algorithm. The International Journal of Advanced Manufacturing Technology, 27(5), 468-472.
    [8] 黃正德.(2019). 結合田口法與反應曲面法之光學鏡片射出成型製程參數最佳化分析. 國立中央大學碩士論文
    [9] Islam, A., Giannekas, N., Marhöfer, D. M., Tosello, G., & Hansen, H. N. (2015, May). The shrinkage behavior and surface topographical investigation for micro metal injection molding. In AIP Conference Proceedings (Vol. 1664, No. 1, p. 110007). AIP Publishing LLC.
    [10] Thornagel, M. (2012). Injection moulding simulation: New developments offer rewards for the PIM industry. PIM International, 6(1), 65-68.
    [11] 周韋辰.(2020). 金屬粉末射出成型隨形水路模具設計製造與成型分析. 國立中央大學碩士論文.
    [12] Fernandes, C., Pontes, A. J., Viana, J. C., & Gaspar‐Cunha, A. (2018). Modeling and Optimization of the Injection‐Molding Process: A Review. Advances in Polymer Technology, 37(2), 429-449.
    [13] Choi, D. S., & Im, Y. T. (1999). Prediction of shrinkage and warpage in consideration of residual stress in integrated simulation of injection molding. Composite Structures, 47(1-4), 655-665.
    [14] 羅壬成.(2006). 模流分析與射出成型控制參數的優化. 國立交通大學碩士論文.
    [15] 科盛科技. Moldex3D R15.0 Help. Available: http://support.moldex3d.com/r15/zh-TW/modelpreparation_reference-pre_meshqualitydefinition.html
    [16] 李輝煌.(2008). 田口方法:品質設計的原理與實務. 高立圖書股份有限公司
    [17] 林李旺.(2018). 突破品質水準–實驗設計與田口方法之實務應用. 全華圖書股份有限公司
    [18] Antony, J., & Antony, F. J. (2001). Teaching the Taguchi method to industrial engineers. Work study.
    [19] Ozcelik, B., & Erzurumlu, T. (2006). Comparison of the warpage optimization in the plastic injection molding using ANOVA, neural network model and genetic algorithm. Journal of materials processing technology, 171(3), 437-445.
    [20] Mohan, M., Ansari, M. N. M., & Shanks, R. A. (2017). Review on the effects of process parameters on strength, shrinkage, and warpage of injection molding plastic component. Polymer-Plastics Technology and Engineering, 56(1), 1-12.
    [21] Asghar, A., Abdul Raman, A. A., & Daud, W. M. A. W. (2014). A comparison of central composite design and Taguchi method for optimizing Fenton process. The Scientific World Journal, 2014.
    [22] Ferreira, S. C., Bruns, R. E., Ferreira, H. S., Matos, G. D., David, J. M., Brandão, G. C., ... & Dos Santos, W. N. L. (2007). Box-Behnken design: an alternative for the optimization of analytical methods. Analytica chimica acta, 597(2), 179-186.
    [23] Mäkelä, M. (2017). Experimental design and response surface methodology in energy applications: A tutorial review. Energy Conversion and Management, 151, 630-640.
    [24] Derringer, G., & Suich, R. (1980). Simultaneous optimization of several response variables. Journal of quality technology, 12(4), 214-219.
    [25] Chuang, M. T., Yang, Y. K., & Hsiao, Y. H. (2009). Modeling and optimization of injection molding process parameters for thin-shell plastic parts. Polymer-Plastics Technology and Engineering, 48(7), 745-753.
    [26] 詹曉苓.(2006). 運用混合演算法於田口動態特性之參數設計最佳化. 國立交通大學博士論文
    [27] Tseng, W. J. (2000). Warping evolution of injection-molded ceramics. Journal of Materials Processing Technology, 102(1-3), 14-18.

    QR CODE
    :::