| 研究生: |
左仕沛 Shih-pei Zuo |
|---|---|
| 論文名稱: |
基於編碼增益下H.264解碼器移動補償之複雜度控制 Coding-Gain-Based Complexity Control for Motion Compensation in H.264 Video Decoding |
| 指導教授: |
張寶基
Pao-chi Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 視訊壓縮 、複雜度控制 、移動補償 、編碼增益 |
| 外文關鍵詞: | video coding, complexity control, motion compensation, coding gain |
| 相關次數: | 點閱:4 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
視訊壓縮編碼與網路的蓬勃發展促成了多樣化的多媒體應用,如錄影與視訊會議。即時視訊編解碼應用在行動裝置上也已經相當地普遍。最新的視訊壓縮標準H.264提供了許多編碼工具來達到高編碼效率,相對在編解碼端也增加較高的運算複雜度。然而在行動裝置上即時視訊解碼運算複雜度是有限的,因此控制解碼器的運算複雜度使其低於複雜度限制並且維持最佳位元率-失真效能是非常重要的課題。
本論文針對H.264解碼器之移動補償運算,提出一個利用編碼增益階層(Coding-gain-based layer, CGL)複雜度控制機制來控制解碼器複雜度。實驗結果顯示,一般影像採用所提出之編碼增益階層三(CGL-3)進行編碼所產生之串流,最高可節省達37%之解碼時間且PSNR只稍降0.44dB。而本機制也可以針對解碼器不同複雜度的限制下,提供相符之編碼串流來進行即時解碼,利用此機制產生之串流所需解碼複雜度和實際上相比,平均誤差僅為2.43 %,亦即在可接受之視訊品質需求且解碼器複雜度有限狀況下,本研究所提之複雜度控制機制可以有效的控制解碼端的複雜度,達到複雜度控制之目的。
Video Applications in mobile devices become more and more popular. The latest video compression standard H.264/AVC provides various coding tools to achieve high coding efficiency at the expense of high computational complexity. Because the computation capability of a mobile device is generally constrained, the full-scale H.264 video decoding may be not allowed for a mobile device. Therefore, a complexity control mechanism which adjusts the complexity of video coding computational complexity and maintains the Rate-Distortion (RD) performance is important.
Most studies on complexity control focus on the encoding side. However, we propose a complexity control mechanism for video decoders because decoders are more popularly used. Motion compensation (MC) is the most complexity-consuming operation in H.264 video decoding, the complexity control of MC is critical and the first one to be considered in our work. This research proposes a Coding-Gain-Based layer (CGL) mechanism which controls MC complexity of the decoder by controlling allowable search point locations and partition modes in the encoder. The computational overhead of the proposed mechanism is totally just in the encoder. The simulation results show that the proposed mechanism can reduce decoding time up to 37% with less than 0.44 dB video quality degradation compared with no complexity constrained case. It can efficiently control the decoding complexity with only 2.43% error rate on average.
[1] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol.13, no.7, pp.560-576, July. 2003.
[2] M. Horowitz, A. Joch, F. Kossentini and A. Hallapuro, “H.264/AVC baseline profile decoder complexity analysis,” IEEE Transactions. Circuits Systems for Video Technology, vol. 13, no. 7, pp.704-716, July 2003.
[3] Q. Xe, J. Liu, S. Wang, and J. Zhao, “H.264/AVC baseline profile decoder optimization on independent platform,” 2005 International Conference on Wireless Communications, Networking and Mobile Computing, vol. 2, pp. 1253 – 1256, Sep. 2005.
[4] M. C. Chien, Z. Y. Chen, and P. C. Chang, “Coding-gain-based complexity control for H.264 video encoder,” 15th IEEE International Conference on Image Processing, vol., no., pp.2136-2139, 12-15 Oct. 2008.
[5] Y. Wang and S. F. Chang, “Motion estimation and mode decision for low-complexity h.264 decoder,” Tech. Rep. 210-2005-4, Columbia University DVMM Group, 2005.
[6] Y. Wang and S. F. Chang, “Complexity adaptive H.264 encoding for light weight stream,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), pp. II25–II28 , May 2006.
[7] Z. B. Chen, P. Zhou, and Y. He, “Fast integer pel and fractional pel motion estimation for jvt,” in JVT of ISO/IEC MPEG and ITU-T VCEG, JVT-F017, Awaji, Japan, 5-13 Dec. 2002.
[8] S. W. Lee and C.-C. J. Kuo, “Complexity Modeling of Spatial and Temporal Compensations in H.264/AVC Decoding,” IEEE Transactions on Circuits and Systems for Video Technology, vol.20, no.5, pp.706-720, May 2010.
[9] S. W. Lee and C.-C. J. Kuo, “Complexity modeling of spatial and temporal compensations in H.264/AVC decoding,” in Proc. IEEE Int. Conf. Image Process. (ICIP), pp. 2504–2507, Oct. 2008.
[10] S. W. Lee and C.-C. J. Kuo, “Motion compensation complexity model for decoder-friendly H.264 system design,” in Proc. IEEE Int. Workshop Multimedia Signal Process. (MMSP), pp. 119–122 , Oct. 2007.
[11] S. W. Lee and C.-C. J. Kuo, “Complexity modeling of H.264/AVC CAVLC/UVLC entropy decoders, ” IEEE International Symposium on Circuits and Systems, vol., no., pp.1616-1619, 18-21, May 2008.
[12] G. J. Sullivan and T. Wiegand, “Rate-distortion optimization for video compression,” IEEE Signal Processing Magazine, vol. 15, no. 6, pp. 74–90, Nov. 1998.
[13] M. van der Schaar and Y. Andreopoulos, “Rate-distortion-complexity modeling for network and receiver aware adaptation,” IEEE Trans. Multimedia, vol. 7, no. 3, pp. 471–479, Jun. 2005.
[14] H. Kim and Y. Altunbasak, “Low-complexity macroblock mode selection for the H.264/AVC encoders,” IEEE Int. Conf. on Image Processing, Suntec City, Singapore, Oct. 2004.
[15] V. Lappalainen, A. Hallapuro, and T. D. Hamalainen, “Complexity of optimized H.26L video decoder implementation,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 717–725, Jul. 2003.
[16] H. Y. Cheong and A. M. Tourapis, “Fast Motion Estimation within the H.264 codec, ” in proceedings of ICME-2003, Baltimore, MD, July 6-9, 2003.
[17] Joint Model reference software version JM 17.2, Available: http://iphome.hhi.de/suehring/tml/