跳到主要內容

簡易檢索 / 詳目顯示

研究生: 左仕沛
Shih-pei Zuo
論文名稱: 基於編碼增益下H.264解碼器移動補償之複雜度控制
Coding-Gain-Based Complexity Control for Motion Compensation in H.264 Video Decoding
指導教授: 張寶基
Pao-chi Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
畢業學年度: 99
語文別: 中文
論文頁數: 78
中文關鍵詞: 視訊壓縮複雜度控制移動補償編碼增益
外文關鍵詞: video coding, complexity control, motion compensation, coding gain
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 視訊壓縮編碼與網路的蓬勃發展促成了多樣化的多媒體應用,如錄影與視訊會議。即時視訊編解碼應用在行動裝置上也已經相當地普遍。最新的視訊壓縮標準H.264提供了許多編碼工具來達到高編碼效率,相對在編解碼端也增加較高的運算複雜度。然而在行動裝置上即時視訊解碼運算複雜度是有限的,因此控制解碼器的運算複雜度使其低於複雜度限制並且維持最佳位元率-失真效能是非常重要的課題。
    本論文針對H.264解碼器之移動補償運算,提出一個利用編碼增益階層(Coding-gain-based layer, CGL)複雜度控制機制來控制解碼器複雜度。實驗結果顯示,一般影像採用所提出之編碼增益階層三(CGL-3)進行編碼所產生之串流,最高可節省達37%之解碼時間且PSNR只稍降0.44dB。而本機制也可以針對解碼器不同複雜度的限制下,提供相符之編碼串流來進行即時解碼,利用此機制產生之串流所需解碼複雜度和實際上相比,平均誤差僅為2.43 %,亦即在可接受之視訊品質需求且解碼器複雜度有限狀況下,本研究所提之複雜度控制機制可以有效的控制解碼端的複雜度,達到複雜度控制之目的。


    Video Applications in mobile devices become more and more popular. The latest video compression standard H.264/AVC provides various coding tools to achieve high coding efficiency at the expense of high computational complexity. Because the computation capability of a mobile device is generally constrained, the full-scale H.264 video decoding may be not allowed for a mobile device. Therefore, a complexity control mechanism which adjusts the complexity of video coding computational complexity and maintains the Rate-Distortion (RD) performance is important.
    Most studies on complexity control focus on the encoding side. However, we propose a complexity control mechanism for video decoders because decoders are more popularly used. Motion compensation (MC) is the most complexity-consuming operation in H.264 video decoding, the complexity control of MC is critical and the first one to be considered in our work. This research proposes a Coding-Gain-Based layer (CGL) mechanism which controls MC complexity of the decoder by controlling allowable search point locations and partition modes in the encoder. The computational overhead of the proposed mechanism is totally just in the encoder. The simulation results show that the proposed mechanism can reduce decoding time up to 37% with less than 0.44 dB video quality degradation compared with no complexity constrained case. It can efficiently control the decoding complexity with only 2.43% error rate on average.

    摘 要 I Abstract II 致 謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 論文架構 4 第二章 H.264視訊編解碼器介紹 5 2.1 H.264 視訊壓縮標準簡介 5 2.2 H.264編碼器架構介紹 7 2.2.1 畫面內預測(Intra Prediction) 8 2.2.2 畫面間預測(Inter Prediction) 9 2.2.3 轉換(Transform) 11 2.2.4 量化(Quantization) 11 2.2.5 去方塊濾波器(Deblocking Filter) 11 2.2.6 熵編碼(Entropy Coding) 12 2.3 H.264解碼器架構介紹 13 第三章 複雜度控制相關研究介紹 15 3.1 本研究相關之編碼運算介紹 15 3.1.1 區塊模式決策之最佳模式選擇 16 3.1.2 半像素點移動向量內插演算法介紹 18 3.2 複雜度控制相關文獻介紹 24 3.3 本論文研究與現有研究文獻之差異 32 第四章 提出之解碼器複雜度控制機制 33 4.1 子像素點複雜度分析 33 4.2 複雜度分層控制機制 38 4.3 編碼增益階層效能分析 40 4.4 利用編碼增益階層之複雜度控制機制 50 第五章 實驗結果與分析討論 56 5.1 實驗參數與模擬環境 56 5.2 編碼增益分層之結果分析 57 5.3 利用編碼增益階層複雜度控制機制之結果分析 65 5.4 相關研究和編碼增益分層複雜度控制之結果比較及分析 69 第六章 結論與未來展望 76 參考文獻 77

    [1] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol.13, no.7, pp.560-576, July. 2003.
    [2] M. Horowitz, A. Joch, F. Kossentini and A. Hallapuro, “H.264/AVC baseline profile decoder complexity analysis,” IEEE Transactions. Circuits Systems for Video Technology, vol. 13, no. 7, pp.704-716, July 2003.
    [3] Q. Xe, J. Liu, S. Wang, and J. Zhao, “H.264/AVC baseline profile decoder optimization on independent platform,” 2005 International Conference on Wireless Communications, Networking and Mobile Computing, vol. 2, pp. 1253 – 1256, Sep. 2005.
    [4] M. C. Chien, Z. Y. Chen, and P. C. Chang, “Coding-gain-based complexity control for H.264 video encoder,” 15th IEEE International Conference on Image Processing, vol., no., pp.2136-2139, 12-15 Oct. 2008.
    [5] Y. Wang and S. F. Chang, “Motion estimation and mode decision for low-complexity h.264 decoder,” Tech. Rep. 210-2005-4, Columbia University DVMM Group, 2005.
    [6] Y. Wang and S. F. Chang, “Complexity adaptive H.264 encoding for light weight stream,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), pp. II25–II28 , May 2006.
    [7] Z. B. Chen, P. Zhou, and Y. He, “Fast integer pel and fractional pel motion estimation for jvt,” in JVT of ISO/IEC MPEG and ITU-T VCEG, JVT-F017, Awaji, Japan, 5-13 Dec. 2002.
    [8] S. W. Lee and C.-C. J. Kuo, “Complexity Modeling of Spatial and Temporal Compensations in H.264/AVC Decoding,” IEEE Transactions on Circuits and Systems for Video Technology, vol.20, no.5, pp.706-720, May 2010.
    [9] S. W. Lee and C.-C. J. Kuo, “Complexity modeling of spatial and temporal compensations in H.264/AVC decoding,” in Proc. IEEE Int. Conf. Image Process. (ICIP), pp. 2504–2507, Oct. 2008.
    [10] S. W. Lee and C.-C. J. Kuo, “Motion compensation complexity model for decoder-friendly H.264 system design,” in Proc. IEEE Int. Workshop Multimedia Signal Process. (MMSP), pp. 119–122 , Oct. 2007.
    [11] S. W. Lee and C.-C. J. Kuo, “Complexity modeling of H.264/AVC CAVLC/UVLC entropy decoders, ” IEEE International Symposium on Circuits and Systems, vol., no., pp.1616-1619, 18-21, May 2008.
    [12] G. J. Sullivan and T. Wiegand, “Rate-distortion optimization for video compression,” IEEE Signal Processing Magazine, vol. 15, no. 6, pp. 74–90, Nov. 1998.
    [13] M. van der Schaar and Y. Andreopoulos, “Rate-distortion-complexity modeling for network and receiver aware adaptation,” IEEE Trans. Multimedia, vol. 7, no. 3, pp. 471–479, Jun. 2005.
    [14] H. Kim and Y. Altunbasak, “Low-complexity macroblock mode selection for the H.264/AVC encoders,” IEEE Int. Conf. on Image Processing, Suntec City, Singapore, Oct. 2004.
    [15] V. Lappalainen, A. Hallapuro, and T. D. Hamalainen, “Complexity of optimized H.26L video decoder implementation,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 717–725, Jul. 2003.
    [16] H. Y. Cheong and A. M. Tourapis, “Fast Motion Estimation within the H.264 codec, ” in proceedings of ICME-2003, Baltimore, MD, July 6-9, 2003.
    [17] Joint Model reference software version JM 17.2, Available: http://iphome.hhi.de/suehring/tml/

    QR CODE
    :::