| 研究生: |
蔡俊煌 Chun-Huang Tsai |
|---|---|
| 論文名稱: |
Ni/Mg-Al-O觸媒於CH4/CO2重組反應之研究 CO2 Reforming of Methane on Ni/Mg-Al-O Catalyst |
| 指導教授: |
陳吟足
Yn-Zu Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 合成氣 、鎳鎂鋁氧觸媒 、重組反應 |
| 外文關鍵詞: | Surported Nickel Catalyst, Mg/Al mixed oxide, Hydrotalcite, Syngas, CH4/CO2 reforming |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究以共沈澱法製備具有不同Mg/Al比例及不同Ni負載量的hydrotalcite先驅物Ni/HT(x),經高溫煅燒製得觸媒Ni/HTc(x)。利用X光繞射光譜(XRD)、全表面積測定 (BET) 、X-光電子光譜儀 (XPS) 、氫程溫脫附 (H2-TPD) 、氫程溫還原 (H2-TPR) 對觸媒的物理結構及表面性質做鑑定分析。藉由CH4/CO2重組反應測試,探討不同煅燒溫度、還原溫度、Mg/Al比例、Ni負載量及反應溫度之影響,並進行長時間反應穩定性測試,觀察上述之不同變因對觸媒壽命期之影響,並以程溫氫化反應(H2-TPSR)分析觸媒表面積碳,探討觸媒積碳阻抗的能力。
Ni/HTc(x)於800℃煅燒具有高表面積(125 m2/g以上),原觸媒先驅物Ni/HT(x)的hydrotalcite層狀結構經高溫煅燒瓦解形成Mg-Al-O共氧化物,隨著煅燒溫度上升,NiO與MgO逐漸形成固溶。Ni/HTc(x)觸媒不易還原,所需的還原溫度較傳統觸媒Ni/γ-Al2O3及Ni/SiO2高出釵h,且隨著煅燒溫度和Mg/Al比例的增加而增加,此外XPS表面組成分析發現Ni/(Mg+Al)莫耳比隨著煅燒溫度上升而下降,進一步證實NiO和MgO確實形成固溶,增加NiO-MgO之間的作用力。
CH4/CO2重組反應結果知CO2轉化率皆高於CH4轉化率,且CO/H2比值介於1.0~1.2之間。RWGS反應是主要的副反應,同時亦發生蒸氣重組反應,使CO/H2比值趨近於理論值1。CH4及CO2轉化率隨Ni負載量、還原及反應溫度上升而增加;隨煅燒溫度及Mg/Al比上升而減小。CH4/CO2重組反應結果以800℃煅燒,500℃還原,Mg/Al比3,8%Ni負載量,700℃反應溫度條件下的8%Ni/HTc(3)觸媒有較好的穩定性。8%Ni/HTc(3)與8%Ni/HTc(3)im(含浸法製備)、8%Ni/γ-Al2O3及8%Ni/SiO2觸媒進行CH4/CO2重組反應比較下,8%Ni/HTc(3)觸媒有最佳穩定性,H2-TPD計算得8%Ni/HTc(3)有最佳分散度,H2-TPSR亦發現8%Ni/HTc(3)觸媒有最佳的積碳阻抗。
In this study,we prepared different Mg/Al ratios and Ni loading precursor by coprecipitation method,and then calcined at high temperature to prepare Ni/HTc(x) catalysts.
XRD 、BET、XPS、H2-TPR、H2-TPD were used to study the structure and surface properties.
The effect of different calcination temperature、reducing temperature、Mg/Al ratios、Ni loading and reaction temperature was studied by CH4/CO2 reforming.H2-TPSR was used to study coking resistance of catalyst.
Ni/HT(x) has the same structure with hydrotalcite,after calcined at high temperature,the layer stuucture was collased and became Mg-Al-O mixed-oxides,the surface also increased. As the calcined temperature increased NiO and MgO became solid solution.
It is hard to reduce Ni/HTc(x) catalyst,and reducing temperature is higher than Ni/γ-Al2O3 and Ni/SiO2 catalyst. XPS found that Ni/(Mg+Al) ratio reduce as calcination temperature increase,furthre prove NiO and MgO were formed solid solution.
In CH4/CO2 reformimg we found that 8%Ni/HTc(3) catalyst ,calcined at 800℃ ,reduced at 500℃ , Mg/Al ratio is 3,and 700℃ reaction temperature had the best stability than 8%Ni/γ-Al2O3,8%Ni/SiO2. H2-TPSR also found that 8%Ni/HTc(3) had best coking resistance.
參考文獻
1. J. R. Rostrup-Niesen, and J. H. Bak-Hansen,“CO2-Reforming of Methane over Transition Metals”, J. Catal., 144 (1993) 38.
2. Y. G. Chen, K. Tomishige, K. Yokoyama, and K. Fujimoto, “Promoting Effect of Pt, Pd and Rh Noble Metals to the Ni0.03Mg0.97O Solid Solution Catalysts for the Reforming of CH4 with CO2 ”, Appl. Catal. A, 165 (1997) 335.
3. Y. G. Chen, K. Tomishige, and K. Fujimoto,“Formation and Characteristic Properties of Carbonaceous Species on Nickel-Magnesia Solid Solution Catalysts during CH4-CO2 Reforming Recation ”, Appl. Catal. A, 161 (1997) L11.
4. Y. G. Chen, K. Tomishige, and K. Fujimoto,“Studies on Carbon Deposition in CO2 Reforming of CH4 over Nickel-Magnesia Solid Solution Catalysts ”, J. Catal., 181 (1999) 91.
5. E. Ruckenstein, and Y. H. Hu,“Carbon Dioxide Reforming of Methane over Nickel/Alkaline Earth Metal Oxide Catalysts”, Appl. Catal. A, 133 (1995) 149.
6. Y. H. Hu, and E. Ruckenstein,“An Optimum NiO Content in the CO2 reforming of CH4 with NiO/MgO Solid Solution Catalysts ”, Catal. Lett., 36 (1996) 145.
7. E. Ruckestin, and Y. H. Hu,“Temperature-Programmed Desorption of CO Adsorbed on NiO/MgO ”, J. Catal., 163 (1996) 306.
8. E. Ruckenstein, Y. H. Hu,“The Effect of Precursor Conditions of MgO on the CO2 Reforming of CH4 over NiO/MgO Catalysts”, Appl. Catal. A, 154 (1997) 185.
9. Y. H. Hu, and E. Ruckenstein,“The Characterization of a Highly Effective NiO/MgO Solid Solution Catalysts in the CO2 Reforming of CH4 ”, Catal. Lett., 43 (1997) 71.
10. F. Cavani, F. Trifiro, and A. Vacari,“Hydrotalcite-type Anionic Clays: Preparation, Properties and Applications”, Catal. Today., 11 (1991) 173.
11. W. T. Reichle,“Catalytic Reactions by Thermally Activated Anionic Clay Minerals ”, J. Catal., 94 (1985) 547.
12. Z. L. Zhang, V. A. Tsipouriari, A. M. Efstathiou, and X. E. Verykios,“Reforming of Methane with Carbon Dioxide to Synthesis Gas over Supported Rhodium Catalysts”, J. Catal., 158 (1996) 51.
13. A. M. Efstathiou, A. Kladi, V. A. Tsipouriari, and X. E. Verykios,“Reforming of Methane with Carbon Dioxide to Synthesis Gas over Supported Rhodium Catalysts”, J. Catal., 158 (1996) 64.
14. J. Erdohelyi, Cserenyi, and F. Solymosi,“Activation of CH4 and Its Reaction with CO2 over Supported Rh Catalysts”, J. Catal., 141 (1993) 287.
15. J. Nakumara, K. Aikawa, K. Sato, and T. Uchijima,“Role of Support in Reforming CH4 with CO2 over Rh Catalysts”, Catal. Lett., 25 (1994) 265.
16. N. Matsui, K. Anzai, N. Akamatsu, K. Nakagawa, N. Ikenaga, and T. Suzuki, “Reaction Mechanisms of Carbon Dioxide Reforming of Methane with Ru-loaded Lanthanum Oxide Catalyst“ , Appl. Catal. A, 179 (1999) 247.
17. C. T. Au, and H. Y. Wang,“Carbon Dioxide Reforming of Methane to Syngas over SiO2-Supported Rhodium Catalysts”, Appl. Catal. A, 155 (1997) 239.
18. J. H. Bitter, K. Seshan, and J. A. Lercher,“The State of Zirconia Supported Platinum Catalysts for CO2/CH4 Reforming”, J. Catal. 171 (1997) 279.
19. J. H. Bitter, K. Seshan, and J. A. Lercher,“Mono and Bifunctional Pathways of CO2/CH4 Reforming over Pt and Rh Based Catalysts”, J. Catal., 176 (1998) 93.
20. J. H. Bitter, W. Hally, L. Seshan, J. G. Van-Ommen, and J. A. Leachr,“The Role of the Oxidic Support on the Deactivation of Pt Catalysts during the CO2 Reforming of Methane ”, Catal. Today, 29 (1996) 349.
21. K. Nagaoka, K. Seshan, Ken-ichi Aika, and J. A. Lercher,“Carbon Deposition during Carbon Dioxide Reforming of Methane-Comparison between Pt/Al2O3 and Pt/ZrO2 ”, J. Catal. 197 (2001) 34.
22. A. N. J. Vankeulen, K. Seshan, J. H. B. J. Hoobink, and J. R. H. Ross,“TAP Investigation of the CO2 Reforming of CH4 over Pt/ZrO2”, J. Catal., 166 (1997) 306.
23. Yin-Zu Chen, Biing-Jye Liaw, Ching-Fu Kao, Jung-Chih Kuo, “Yttria-Stabilized Zirconia Supported Platinum Catalysts (Pt/YSZs) for CH4/CO2 Reforming”, Appl. Catal. A, 217 (2001) 23.
24. 賴文漢,“CH4 +CO2於ZrO2/SiO2和La2O3/Al2O3負載式鉑觸媒之重組反應研究”,中央化工所碩士論文 (2000).
25. F. Solymosi, J. Cserenyi, E. Papp, and A. Erdohelyi,“Catalytic Reaction of Methane with Carbon Dioxide over Supported Palladium ”, Appl. Catal. A, 108 (1994) 205.
26. F. Solymosi, J. Cserenyi, A. Felvegi, and A. Erdohelyi,“Decomposition of CH4 over Supported Pd Catalysts”, J. Catal., 147 (1994) 272.
27. S. Wang, and G. Q. Lu,“Reforming of Methane with Carbon Dioxide over Ni/Al2O3:Effect of Nickel Precursor”, Appl. Catal. A, 169 (1998) 271.
28. S. S. Wang, and G. Q. Lu, “CO2 Reforming of Methane on Ni Catalysts:“Effect of the Support Phase and Preparation Technique ”, Appl. Catal. B, 16 (1998) 269.
29. M. C. J. Bradford, and M. A. Vannice,“Catalytic Reforming of Methane with Carbon Dioxide over Nickel Catalysts I. Catalyst Characterization and Activity”, Appl. Catal. A, 142 (1996) 73.
30. F. Arena, B. A. Horrell, D. L. Cocke, A. Parmaliana, and A. Giordano, “Magnesia-Supported Nickel Catalysts I. Factors Affecting the Structure and Morphological Properties”, J. Catal., 132 (1991) 58
31. F. Arena, B. A. Horrell, D. L. Cocke, A. Parmaliana, and A. Giordano,“Magnesia-Supported Nickel Catalysts Ⅱ. Surface Properties and Reactivity in Methane Steam Reforming”, J. Catal., 141 (1993) 34.
32. E. Ruckestin, and Y. H. Hu,“High-Resolution Transmission Electron Microscopy Study of Carbon Deposited on the NiO/MgO Solid Solution Catalysts”, J. Catal., 184 (1999) 298.
33. M. C. J. Bradford, and M. A. Vannice,“ Catalytic Reforming of Methane with Carbon Dioxide over Nickel Catalysts Ⅱ. Reaction Kinetics”, Appl. Catal. A, 142 (1996) 97.
34. Z. X. Cheng, X. G. Zhao, J. L. Li, and Q. M. Zhu,“Role of Support in CO2 Reforming of CH4 over a Ni/γ-Al2O3 Catalyst”, Appl. Catal. A, 205 (2001) 31.
35. A. Corma, V. Fornes, and F. Rey,“Hydrotalcites as Base Catalyst: Influence of the Chemical Composition and Synthesis Condition on the Dehydrogenation of Isopropanol”, J. Catal., 148 (1994) 205.
36. A. L. McKenzie , C. T. Fishel, and T. J. Davis, “Investigation of the Surface Structure and Basic Properties of Calcined Hydrotalcites”, J. Catal., 138 (1992) 547.
37. 廖志偉,“一步合成甲基異丁基酮之多弁鉔眼C研究-Pd (Ni) / hydrotalcite”, 中大化工所碩士論文 (1996).
38. H. Schaper, J. J. Berg-Slot, and W. H. J. Stork, Thermochimica Acta, (1989) 79.
39. J. M. Lopez Nieto, A. Dejoz, and M. I. Vazquez,“Preparation, Characterization and Catalytic Properties of Vanadium Oxides Supported on Calcined Mg/Al-hydrotalcite ”, Appl. Catal. A, 132 (1995) 41.
40. D. Tichit , M. H. Lhouty, A. Guida, B. H. Chiche, F. Figueras, A. Auroux, D. Bartalini, and E. Farronn,“Textural Properties and Catalytic Activity of Hydrotalcites ”, J. Catal., 151 (1995) 50.
41. A. Corma, V. Fornes, R. M. Martin-Aranda, and F. Rey, “Determination of Base Properties of Hydrotalcites: Condensation of Benzaldehyde with Ethyl Acetoacetate”, J. Catal., 134 (1992) 58.
42. C. P. Keikar, and A. A. Schutz,“Ni-, Mg- and Co-containing Hydrotalcite-like Materials with a Sheet-like Morphology: Synthesis and Characterization”, Microporous Material, 10 (1997) 163.
43. M. A. Ulibarri, I. Pavlovic, C. Barriga, M. C. Hermosin, and J. Cornejo,“Adsorption of Anionic Species on Hydrotalcite-like Compounds: Effect of Interlayer Anion and Crystallinity”, Appl. Clay Sci., 18 (2001) 17 .
44. C. Fornasari, M. Gazzano, D. Matteuzzi, F. Trifiro, and A. Vaccari“Structure and Reactivity of High-surface-area Ni/Mg/Al Mixed Oxides”, Appl. Clay Sci., 10 (1995) 69 .
45. 李東穎,“Pd (Ni) / hydrotalcite觸媒於苯酚一步合成還己酮之研究”, 中大化工所碩士論文 (1997).