跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳秉謙
Bing-Qian Chen
論文名稱: 增加資料速率的同調和非同調空間調變架構
Coherent and Noncoherent Spatial Modulation for Increasing Data Rates
指導教授: 魏瑞益
Ruey-Yi Wei
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 59
中文關鍵詞: 通訊工程編碼調變空間調變
外文關鍵詞: communications engineering, coded modulation, spatial modulation
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們研究兩種空間調變。第一種是長區塊相差空間調變,原始長區塊相差空間調變的解碼會過於複雜,因此本篇論文提出了新的位元映射和檢測方式以降低長區塊相差空間調變的解碼複雜度。第二種是廣義空間調變,為了使廣義空間調變有更高的傳送速率,我們將交錯樣式加入廣義空間調變,我們先是分類不同的天線排列,並推導出每一種類適合的交錯樣式,使得傳送多樣性至少為二。最後,我們將廣義相差空間調變套用於長區塊相差空間調變的系統架構。與原本的廣義相差空間調變相比,所提出的方案有更高的傳輸速率,且在接收天線等同傳送天線的情況下,隨著區塊長度的增加,新方案會有更好的錯誤率。


    In this thesis, we research two kinds of spatial modulation. The first one is long block differential spatial modulation (LB-DSM). The decoding of the original LB-DSM is too complicated, so we propose a new bit mapping and detection method to reduce the decoding complexity of the LB-DSM. The second is generalized spatial modulation (GSM). We first classify different antenna permutation and derive the appropriate interleaving patterns for each class, so that the transmission diversity is at least two. Finally, we apply the scheme of LB-DSM to the generalized differential spatial modulation (GDSM), called LB-DSM. The LB-DSM has a higher transmission rate than the GDSM with symbol interleaved. The new scheme has a better error rate with increasing transmission block length when the receiving antenna is equivalent to the transmitting antenna.

    摘要 IV Abstract V 致謝 VI 目錄 VII 圖目錄 IX 表目錄 X 第一章 緒論 1 第二章 相關背景回顧 3 2.1 相差空間調變 3 2.2長區塊相差空間調變 5 2.3 使用符元交錯的廣義相差空間調變 7 2.3.1 傳送端 7 2.3.2 交錯樣式 9 2.3.3 接收端 13 第三章 低複雜度之長區塊相差空間調變 15 3.1 位元映射與參考順序 15 3.2 低複雜度檢測 17 3.3 錯誤率模擬與分析 21 第四章 增加速率之廣義空間調變 26 4.1 系統架構與理論推導 26 4.2 傳送端-位元映射方式 32 4.3 錯誤率模擬結果分析 34 第五章 長區塊廣義相差空間調變 37 5.1 計算加入交錯樣式的廣義相差空間調變的錯誤率上限 37 5.2 傳送方式與位元映射 40 5.3 接收端與模擬結果 42 5.4 錯誤率模擬與分析 43 第六章 結論 46 參考文獻 47

    Veh. Technol., vol. 57, no. 4, pp. 2228–2242, Jul. 2008.
    [2] J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “Spatial modulation: Optimal detection and performance analysis,” IEEE Commun. Lett., vol. 12,no. 8, pp. 545–547, Aug. 2008.
    [3] M. Renzo, H. Haas, and P. Grant, “Spatial modulation for multiple-antenna wireless systems: A survey,” IEEE Commun. Mag., vol. 49,no. 12, pp. 182–191, Dec. 2011.
    [4] Y. Bian, X. Cheng, M. Wen, L. Yang, H. V. Poor, and B. Jiao,“Differential spatial modulation,” IEEE Trans. Veh. Technol., vol. 64,no. 7, pp. 3262-3268, Jul. 2015.
    [5] N. Ishikawa and S. Sugiura, “Unified differential spatial modulation,”IEEE Wireless Commun. Lett., vol. 3, no. 4, pp. 337-340, Aug. 2014.
    [6] R. Mesleh, S. Althunibat, and A. Younis, “Differential quadrature spatial modulation,” IEEE Trans. Commun., vol. 65, no. 9, pp. 3810-3817, Sept.2017.
    [7] N. Ishikawa and S. Sugiura, “Rectangular differential spatial modulation for open-loop noncoherent massive-MIMO downlink,” IEEE Trans. Wireless Commun., vol. 16, no. 3, pp. 1908-1920, Mar. 2017.
    [8] J. Liu, L. Dan, P. Yang, L. Xiao, F. Yu, and Y. Xiao, “High-rate APSK-aided differential spatial modulation: Design method and performance analysis,” IEEE Commun. Lett, vol. 21, no. 1, pp. 168-171, Jan. 2017.
    [9] S. M. Alamouti, “A simple tran空間調變itter diversity scheme for wireless communications,” IEEE J. Select. Areas Commun., vol. 16, pp. 1451-1458, Oct. 1998.
    [10] L. Xiao, Y. Xiao, P. Yang, J. Jiu, S. Li, and W. Xiang, “Space-time block coded differential spatial modulation,” IEEE Trans. Veh. Technol., vol. 66, no. 10,pp. 8821-8834, Oct. 2017.
    [11] B. M. Hochwald and W. Swelden, “Differential unitary space-time modulation,” IEEE Trans. Commun., vol. 48, pp. 2041-2052, Dec. 2000.
    [12] B. L. Hughes, “Differential space-time modulation,” IEEE Trans. Inform.Theory, vol. 46, pp. 2567-2578, no. 7, Nov. 2000.
    [13] R. Y. Wei and T. Y. Lin, “Low-complexity differential spatial modulation,”IEEE Wireless Commun. Lett., vol. 8, no. 2, pp. 356-359, Apr.2019.
    [14] R. Y. Wei, “Low-complexity differential spatial modulation schemes fora lot of antennas,” IEEE Access, vol. 8, pp. 63725-63734, 2020.
    [15] R. Y. Wei, Y. W. Tsai and S. L. Chen, “Improved schemes of differential spatial modulaton,”IEEE Access, vol. 9, pp. 97120-97128, July. 2021.
    [16] R. Rajashekar, N. Ishikawa, S. Sugiura, K. V. S. Hari, and L. Hanzo,“Full-diversity dispersion matrices from algebraic field extensions for differential spatial modulation,” IEEE Trans. Veh. Technol., vol. 66, no. 1, pp. 385–394, Jan. 2017.
    [17] 林育宏, “使用符元交錯相差空時調變的廣義相差空間調變” 國立中央大學通訊工程研究所,碩士論文, 七月. 2020.
    [18] 陳式倫, “進階的相差空間調變方案” 國立中央大學通訊工程研究所,碩士論文, 六月. 2021.
    [19] 李昱君, “長區塊相差空間調變” 國立中央大學通訊工程研究所,碩士論文, 六月. 2021.
    [20] A. G. Helmy, M. D. Renzo, and N. Al-Dhahir, “Differential spatially modulated space-time block codes with temporal permutations,” IEEE Trans. Veh. Technol., vol. 66, no. 8, pp. 7548-7552, Aug. 2017.
    [21] K. Kadathlal, H. Xu, and N. Pillay, “Generalised differential schemes for spatial modulation systems,” IET Commun., vol. 11, no. 13, pp. 20202026, Oct. 2017.
    [22] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for high data rate wireless communication: Performance criterion and code construction,” IEEE Trans. Inform. Theory, vol. 44, pp. 744-765, Mar. 1998.

    QR CODE
    :::