| 研究生: |
李延慶 Yan-ching Lee |
|---|---|
| 論文名稱: |
臺灣中部晚期始新世至中期中新世同張裂至後分離期之沉積環境及層序地層研究 A Study on Paleoenvironments and Sequence Stratigraphy of Late Eocene to Middle Miocene Syn-rift to Post-break-up Deposits, Central Taiwan |
| 指導教授: |
林殿順
Tien-Shun Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 地球科學學系 Department of Earth Sciences |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 148 |
| 中文關鍵詞: | 沉積相 、層序地層 、木山層 、大寮層 、石底層 |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣的新生代地層可依不同地體構造時期區分為同張裂期、後張裂(被動大陸邊緣)期以及前陸盆地期層序,並以張裂不整合、分離不整合、前陸基底不整合三個部整合面區分(Lin et al., 2003)。後分離時期之地層以北港基盤高區為界,分為南、北兩套地層命名,北部的地層向南一路延伸至苗栗一帶,但至中、南投地區,卻又以另外一套地層名稱命名。黃等人 (2012, 2013)指出,在南投中寮鄉之地層粗坑層中發現分離不整合,不整合上下之地層應給予不同名稱,故粗坑層之名稱應不再使用。依照火成岩鈾鉛定年資料及不整合之上的生物地層,不整合以上之地層應屬於和五指山層同時期之地層序列。
此研究利用層序地層,將南投縣中寮鄉之沉積序列對比至台灣海峽及地面之井測資料,以重建層序堆疊歷史。研究的地層名稱包含:平林凝灰岩、五指山層(上部)、木山層、大寮層、石門層(在此研究分作石底層及北寮層)以及樟湖坑頁岩(打鹿頁岩),時間從晚始新世至早中新世,為台灣地體構造時期之同張裂及後分離時期。
綜合露頭岩相分析及整理Lin et al. (2003)井測資料解釋,我們整理出五種沉積環境,火山周圍淺海、潟湖河口灣、波浪主導、潮汐影響海岸,以及遠濱大陸棚等四種在露頭皆可以看到,而陸上河道系統則只有在井測資料可以見到。
層序對比結果顯示,同張裂至後分離時期的地層共有11套。11套層序在前期 (層序1至4)有東、西兩個沉積中心,沉積物來源從兩側匯來,但是之後的層序 (5至11)則可以看出沉積物由西側向東側漸漸變薄,沉積物應由中國大陸搬運而來。由露頭和井測之解釋資料,區域之沉積古環境得以建立,也可建立沉積環境於時間上的演化。由沉積環境的比較可以發現,中寮鄉之露頭,和北部地層隨時間的變化有高度的相關。
The Cenozoic sequences of Taiwan had been studied by many geologists, and recent publish, which gave a new strata division and correlated some of the successions to northern ones, used biostratigraphy and U-Pb dating of pyroclastic deposits. The oldest cropped out stratum in central Taiwan is used to be called Tsukeng Formation, and is now been renamed as Pinglin Tuff and Wuchishan Formation (Huang et al., 2012, 2013). 11 well logs data had been used for helping strata correlation. 14 samples from filed investigate are depositional environments assistants.
The name of the scrutinized oldest stratum is Pinglin Tuff, and other strata in survey included Wuchishan Formation, Shihszeku Formation, Tanliaoti Shale, Shihmen Formation and Changhukeng Shale. Glauconites were found in Wuchishan Formation and Peliao Formation, especially Peliao Formation. The mineral is a wonderful environments indicator stands for warm, shallow water with low depositional rate. Calcite cements often found in transgressive sands.
Sequence stratigraphy and depositional facies analysis had been used for this study, which can built up a time related depositional model and the environmental description. The environmental interpretation result implies that the outcrops remain deposits of four environments, there are: shallow marine volcano apron, Lagoon-wave dominated estuary, Wave-dominated, tidal-influenced coasts and offshore continental shelf, and interpretation of well logs gets addition one is fluvial system. 11 sequences were divided out from outcrops and wells deposits, the sequences are well correlated, and give the perfect result of strata correlation: Tanliaoti Shale to Taliao Formation, Shihmen Formation is equivalence to Shihti and Peiliao Formation, and Changhukeng Shale to Talu Shale.
The northern three well log data were used to be belong to another river system. The field survey area is the closest spot to depositional basin among all check points. The east west profile shows that sequence accumulation at two depocenter in sequence 1 to 4, which deposits thickness doesn’t show regularity, but in the later deposit stages, sediments show stable thinning from source to sink.
The study concluded that: The field survey area shows high relativity to the northern depositional system, that’s makes the field area to be a perfect correlated successions.
Benton, M. J., & Harper, D. A. (1997). Basic palaeontology. Prentice Hall.
Blow, W. H. (1969, September). Late Middle Eocene to Recent planktonic foraminiferal biostratigraphy. In Proceedings of the first international conference on planktonic microfossils (Vol. 1, pp. 199-422). EJ Brill Leiden.
Boggs Jr, S. A. (2001). Principles of stratigraphy and sedimentology.
Bruun, P. (1962). Sea-level rise as a cause of shore erosion. Journal of the Waterways and Harbors division, 88(1), 117-132.
Chang, L. S. (1959). A Biostratigraphic study of the Miocene in Western Taiwan based on smaller Foraminifera (Part I: Planktonics). In Proc. Geol. Soc. China (Vol. 2, pp. 47-72).
Chang, L. S. (1959). A Biostratigraphic study of the Miocene in Western Taiwan based on smaller Foraminifera (Part I: Planktonics). In Proc. Geol. Soc. China (Vol. 2, pp. 47-72).
Chi, W. R. (1979). Calcareous nannoplankton biostratigraphy of the Nantou area, central Taiwan. Petrol. Geol. Taiwan, 16, 131-165.
Chiu, H. T. (1972). Miocene stratigraphy of the Nantou area, central Taiwan.Petroleum Geology Taiwan, 10, 159-177.
Chiu, H. T. (1975). Miocene stratigraphy and its relation to the Palaeogene rocks in west-central Taiwan. Petroleum Geology of Taiwan, 12, 51-80.
Chou, J. T. (1974). A sedimentologic and paleogeographic study of the Miocene Wuchihshan Formation in western Taiwan. Petroleum Geology of Taiwan, 11, 41-55.
Chou, J. T. (1980). Stratigraphy and sedimentology of the Miocene in western Taiwan. Petroleum Geology of Taiwan, 17, 33-52.
Clifton, H. E., Hunter, R. E., & Phillips, R. L. (1971). Depositional structures and processes in the non-barred high-energy nearshore. Journal of Sedimentary Research, 41(3).
Collinson, J. D. (1969). The sedimentology of the Grindslow Shales and the Kinderscout Grit: a deltaic complex in the Namurian of northern England.Journal of Sedimentary Research, 39(1).
Dalrymple, R. A., & Dean, R. G. (1991). Water wave mechanics for engineers and scientists. Prentice-Hall.
Darling, T. (2005). Well logging and formation evaluation. Elsevier.
Dashtgard, S. E., MacEachern, J. A., Frey, S. E., & Gingras, M. K. (2012). Tidal effects on the shoreface: Towards a conceptual framework. Sedimentary Geology, 279, 42-61.
De Mowbray, T., & Visser, M. J. (1984). Reactivation surfaces in subtidal channel deposits, Oosterschelde, Southwest Netherlands. Journal of Sedimentary Research, 54(3).
Dominguez, J. M. L., & Wanless, H. R. (1991). Facies Architecture of a Falling Sea‐Level Strandplain, Doce River Coast, Brazil. Shelf sand and sandstone bodies: geometry, facies and sequence stratigraphy, 257-281.
Dott, R. H., & Bourgeois, J. (1982). Hummocky stratification: significance of its variable bedding sequences. Geological Society of America Bulletin, 93(8), 663-680.
Droser, M. L., & Bottjer, D. J. (1986). A semiquantitative field classification of ichnofabric: Research method paper. Journal of Sedimentary Research, 56(4).
Duke, W. L., Arnott, R. W. C., & Cheel, R. J. (1991). Shelf sandstones and hummocky cross-stratification: new insights on a stormy debate. Geology,19(6), 625-628.
Duke, W. L., Arnott, R. W. C., & Cheel, R. J. (1991). Shelf sandstones and hummocky cross-stratification: new insights on a stormy debate. Geology,19(6), 625-628.
Dumas, S., & Arnott, R. W. C. (2006). Origin of hummocky and swaley cross-stratification—the controlling influence of unidirectional current strength and aggradation rate. Geology, 34(12), 1073-1076.
Dumas, S., & Arnott, R. W. C. (2006). Origin of hummocky and swaley cross-stratification—the controlling influence of unidirectional current strength and aggradation rate. Geology, 34(12), 1073-1076.
Etnyre, L. M. (1989). Finding oil and gas from well logs. Van Nostrand Reinhold.
Frey, R. W., & Pemberton, S. G. (1987). The Psilonichnus ichnocoenose, and its relationship to adjacent marine and nonmarine ichnocoenoses along the Georgia coast. Bulletin of Canadian Petroleum Geology, 35(3), 333-357.
Frey, R. W., & Seilacher, A. (1980). Uniformity in marine invertebrate ichnology. Lethaia, 13(3), 183-207.
Galloway, W. E. (2001). Cenozoic evolution of sediment accumulation in deltaic and shore-zone depositional systems, northern Gulf of Mexico Basin.Marine and Petroleum Geology, 18(10), 1031-1040.
Gingras, M. K., Pemberton, S. G., & Saunders, T. (2001). Bathymetry, sediment texture, and substrate cohesiveness; their impact on modern Glossifungites trace assemblages at Willapa Bay, Washington.Palaeogeography, Palaeoclimatology, Palaeoecology, 169(1), 1-21.
Hardenbol, J. (1998). Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins.
Harms, J. C. (1982). Fluvial deposits and facies models.
Hashimoto, W., & Kurihara, K. (1974). Discocyclina from the Tsukeng Formation, Tsukeng, Nantou, central Taiwan, and its geological significance.Bulletin of the Geological Survey of Taiwan, 24, 35-49.
Hashimoto, W., Kanno, S., Aoki, N., & Chung, C. T. (1979). Remarks on the unconformity between the middle and the upper Tsukeng Formation at Takeng, Nantou-Hsien, central Taiwan. Geology and Paleontology of Southeast Asia,20, 177-191.
Ho, C. S. (1961). Correlation of the Takeng Formation and some related stratigraphic principles. Proceedings of the Geological Society of China, 4, 61-71.
Ho, C. S., Tsan, S. F., & Tan, L. P. (1956). Geology and coal deposit of the Chichitashan area, Nantou, Taiwan. Bulletin of the Geological Survey of Taiwan, 9, 1-80.
Huang, C. Y. (1984). Late Oligocene benthic foraminiferal assemblages in northern Taiwan. Benthos, 83, 317-323.
Huang, C. Y., Chi, W. R., Yan, Y., Yang, K. M., Liew, P. M., Wu, M. S., ... & Zhang, C. (2013). The first record of Eocene tuff in a Paleogene rift basin near Nantou, Western Foothills, central Taiwan. Journal of Asian Earth Sciences,69, 3-16.
Huang, C. Y., Yen, Y., Liew, P. M., He, D. J., Chi, W. R., Wu, M. S., & Zhao, M. (2013). Significance of indigenous Eocene larger foraminifera Discocyclina dispansa in Western Foothills, Central Taiwan: A Paleogene marine rift basin in Chinese continental margin. Journal of Asian Earth Sciences, 62, 425-437.
Huang, C. Y., Yen, Y., Zhao, Q., & Lin, C. T. (2012). Cenozoic stratigraphy of Taiwan: Window into rifting, stratigraphy and paleoceanography of South China Sea. Chinese Science Bulletin, 57(24), 3130-3149.
Huang, C.Y., Cheng, Y.M., 1983. Oligocene and Miocene planktic foraminiferal biostratigraphy of northern Taiwan. Proceedings of the Geological Society of China 26, 21–56
Huang, T. C. (1979). A supplementary note on the calcareous nannofossils, age, and correlation of the Wuchihshan Formation. Petrol Geol Taiwan, 16, 85-93.
Huang, T. C., & Chi, W. R. (1978). Calcareous nannofossils of the subsurface pre-Miocene rocks from the Peikang Basement High and adjacent areas in western central Taiwan (Part I: Cretaceous). Petroleum geology of Taiwan, 15, 49-87.
Hunt, D., & Tucker, M. E. (1992). Stranded parasequences and the forced regressive wedge systems tract: deposition during base-level'fall. Sedimentary Geology, 81(1), 1-9.
Ichikawa, Y. (1930). Explanatory text of the geological map of Taiwan. Taihoku sheet in the scale of, 150.
Kanno, S., & Chung, C. T. (1975). Tertiary formations and their molluscan faunas from the Central Range and Foothills areas of northern Taiwan. Contri Geol Paleont SE Asia, 15, 363-391.
Kelly, S. R., & Bromley, R. G. (1984). Ichnological nomenclature of clavate borings. Palaeontology, 27(4), 793-807.
Klein, G. D. (1971). A sedimentary model for determining paleotidal range.Geological Society of America Bulletin, 82(9), 2585-2592.
Leckie, D. A., & Walker, R. G. (1982). Storm-and tide-dominated shorelines in Cretaceous Moosebar-Lower Gates interval--outcrop equivalents of Deep Basin gas trap in western Canada. AAPG Bulletin, 66(2), 138-157.
Lee, C.C., 1986. Sedimentology And Seismic Stratigraphy Of The Mushan Formation In Northwestern Taiwan, Offshore
Lin, A. T., Watts, A. B., & Hesselbo, S. P. (2003). Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Research, 15(4), 453-478.
Pemberton, S. G., MacEachern, J. A., & Frey, R. W. (1992). Trace fossil facies models: environmental and allostratigraphic significance. Facies models: response to sea level change, 47-72.
Pirrie, D. (1989). Shallow marine sedimentation within an active margin basin, James Ross Island, Antarctica. Sedimentary Geology, 63(1), 61-82.
Plint, A. G. (1988). Sharp-based shoreface sequences and “offshore bars” in the Cardium Formation of Alberta: their relationship to relative changes in sea level. Sea-Level Changes: An Integrated Approach: SEPM, Special Publication, 42, 357-370.
Plint, A. G., & Nummedal, D. (2000). The falling stage systems tract: recognition and importance in sequence stratigraphic analysis. Geological Society, London, Special Publications, 172(1), 1-17.
Plint, A. G., Eyles, N., Eyles, C. H., & Walker, R. G. (1992). Control of sea level change. Facies Models; Response to Sea Level Change: St. Johns, Newfoundland, Geological Association of Canada, 15-25.
Posamentier, H. W., Allen, G. P., James, D. P., & Tesson, M. (1992). Forced regressions in a sequence stratigraphic framework: concepts, examples, and exploration significance (1). AAPG Bulletin, 76(11), 1687-1709.
Reading, H. G. (Ed.). (2009). Sedimentary environments: processes, facies and stratigraphy. John Wiley & Sons.
Reading, H. G., & Levell, B. K. (1996). Controls on the sedimentary rock record. Sedimentary environments: processes, facies and stratigraphy, 3, 5-36.
Reineck, H. E., & Singh, I. B. (1980). Tidal flats. In Depositional Sedimentary Environments (pp. 430-456). Springer Berlin Heidelberg.
Seilacher, A. (1967). Bathymetry of trace fossils. Marine geology, 5(5), 413-428.
Sengel, E. W. (1981). Handbook on well logging. Institute for Energy Development.
Teng, L. S. (1990). Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183(1), 57-76.
Tucker, M. E. (2011). Sedimentary rocks in the field: a practical guide (Vol. 38). John Wiley & Sons.
Van Wagoner, J. C., Mitchum, R. M., Campion, K. M., & Rahmanian, V. D. (1990). Siliciclastic sequence stratigraphy in well logs, cores, and outcrops: concepts for high-resolution correlation of time and facies.
Visser, M. J. (1980). Neap-spring cycles reflected in Holocene subtidal large-scale bedform deposits: a preliminary note. Geology, 8(11), 543-546.
Walker, R. G. (1984). Turbidites and associated coarse clastic deposits. InFacies models (Vol. 1, pp. 171-188). Ontário: Geological Association of Canada.
Walker, R. G. (1992). Wave-and storm-dominated shallow marine systems.Facies Models-response to sea level change-, 219-238.
Yue, L. F., & Teng, L. S. (2000). Sedimentary facies and depositional cycles of the Mushan Formation. Bull. Cent. Geol. Surv, 13, 157-194.
何春蓀. (1986). 台灣地質概論-台灣地質圖說明書. 經濟部中央地質調查所, 共,163.
呂懿德. (1982). 臺灣北部漸新統貝類化石群硏究
原振維(1979) 五指山層之沉積環境。探採研究彙報(中國石油公司),第2期,第1-20頁。
陳文山、鄂忠信、陳勉銘、楊志成、張益生、劉聰貴、洪崇勝、謝凱旋、葉明官、吳榮章、柯炯德、林清正、黃能偉 (2000) 上–更新世台灣西部前陸盆地的演化:沉積層序與沉積物組成的研究。經濟部中央地質調查所彙刊,第13 號,第137 至156 頁。
顏滄波、陳培源 (1953) 五萬分之一台灣地質圖。圖幅第10號-台北及圖幅說明書。台灣省地質調查所出版。
黃鑑水, 謝凱旋, & 陳勉銘. 埔里圖幅, 五萬分之一台灣地質圖及說明書.
上-更新世台灣西部前陸盆地的演化-沈積層序與沈積物組成的研究. 經濟部中央地質調查所彙刊, 2000, 13.
臺灣西南部上新統至更新統的岩象學研究與地層對比. 經濟部中央地質調查所特刊, 1994, 8: 83-99.
游能悌. (2001). 台灣西部漸新統至中新統的層序地層學 (Doctoral dissertation, National Taiwan University Department of Geology.).
游能悌, & 鄧屬予. (1995). 中新統的岩相與沉積環境.
台灣西部第三系之層序地層學研究 (II). 2000.