跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄒育霖
Yu-Lin Zou
論文名稱: Ka頻段低相位雜訊雙推式振盪器之研製
Study on Ka-band Low Phase Noise Push-Push Oscillator
指導教授: 邱煥凱
Hwann-Kaeo Chiou
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 94
語文別: 中文
論文頁數: 92
中文關鍵詞: 雙推式
外文關鍵詞: push push
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文所研究的內容為微波振盪器之積體電路設計,為降低高頻振盪器的相
    位雜訊,論文使用雙推式振盪器架構,並且以理論證明此架構確實可有效改善相
    位雜訊。使用WIN pHEMT 0.15-μm 製程的電路包括(1)Ka-頻段基頻壓控振盪
    器,振盪頻率為24.97 GHz,可調頻率範圍270 MHz,偏移主頻1 MHz 之相位雜
    訊為-96.84 dBc/Hz;(2)Ku-頻段有限接地之共面波導基頻振盪器,振盪頻率14.75
    GHz,偏移主頻1 MHz 之相位雜訊為-118.96 dBc/Hz,優化指數(FOM)為-191.8
    dBc/Hz ;(3)Ka-頻段有限接地之共面波導雙推式振盪器,振盪頻率為30.3 GHz,
    偏移主頻1MHz 之相位雜訊為-113.2 dBc/Hz,優化指數為-188.16 dBc/Hz 。最後
    是使用TSMC CMOS 0.18-μm 製程所實現的(4)Ka-頻段交互耦合之雙推式壓控振
    盪器,振盪頻率為26.7 GHz,可調頻率範圍為1.95 GHz,偏移主頻1 MHz 之相
    位雜訊為-117.5 dBc/Hz。且此電路展現出優異的優化指數為-199.82 dBc/Hz。


    The content of this thesis is about microwave oscillator integrated circuit design.
    The push-push oscillator topology is used in this thesis to lower phase noise of high
    oscillation frequency oscillator. General phase noise theory on push-push oscillator is
    developed to prove it’s naturally having low phase noise property. WINTM pHEMT
    0.15-μm technology is adopted to implement:(1) Ka-band fundamental VCO. The
    oscillation frequency is 24.97 GHz, tuning range is 270 MHz, and phase noise is
    -96.84 dBc/Hz at 1MHz offset;(2) The second circuit is a Ku-band Finite Ground (FG)
    CPW fundamental oscillator. The oscillation frequency is 14.75 GHz, phase noise is
    -118.96 dBc/Hz at 1 MHz offset, and -191.8 dBc/Hz of Figure-of-Merit(FOM);(3)
    The third circuit is a Ka-band FG CPW push-push oscillator. The oscillation
    frequency is 30.3 GHz, phase noise is -113.2 dBc/Hz at 1MHz offset, and FOM is
    -188.16 dBc/Hz. Finally, TSMC CMOS 0.18-μm technology is adopted to implement
    the fourth circuit which is a Ka-band cross-coupled push-push VCO. The oscillation
    frequency is 26.7 GHz, tuning range is 1.95 GHz, phase noise is -117.5 dBc/Hz at
    1MHz offset and exhibited an excellent FOM of -199.82 dBc/Hz.

    目錄 第一章、緒論 1 1-1、研究動機 1 1-2、研究成果 1 1-3、章節概述 2 第二章、微波光子接收機之本地端電路研製 3 2-1、毫米波收發機簡介 3 2-2、WIN GaAs 0.15-μm pHEMT 製程技術簡介 4 2-3、振盪器原理分析 5 2-3-1、巴克豪森振盪原理分析 6 2-3-2、負電阻振盪原理分析 8 2-3-3、電晶體之穩定度分析 13 2-4、相位雜訊理論分析 16 2-4-1、相位雜訊之定義 16 2-4-2、相位雜訊對射頻通訊系統之影響 17 2-4-3、雷森公式理論 18 2-4-4、時變相位雜訊模型的建立 20 2-4-5、改善相位雜訊之方式 26 2-5、Ka-頻段基頻壓控振盪器設計 28 2-5-1、電路架構及設計原理分析 28 2-5-2、Ka-頻段基頻壓控振盪器之量測結果 31 第三章、低相位雜訊之雙推式振盪器設計 34 3-1、雙推式振盪器簡介 34 3-1-1、架構簡介 34 3-1-2、雙推式模態之理論 35 3-1-3、架構比較 38 3-2、雙推式振盪器架構之相位雜訊分析 40 V 3-2-1、相位雜訊模型之建立 40 3-3、有限接地共平面波導之基頻與雙推式振盪器設計 43 3-3-1、Ku-頻段基頻振盪器電路之架構及設計流程 43 3-3-2、Ku-頻段基頻振盪器之量測結果 45 3-3-3、Ka-頻段雙推式振盪器之實現及量測結果 47 3-3-4、基頻振盪器與雙推式振盪器之結果討論 51 第四章、應用於Ka 頻段之CMOS雙推式壓控振盪器設計 55 4-1、CMOS 電晶體模型分析 55 4-2、Ka-頻段CMOS 交互耦合之雙推式振盪器架構理論分析 58 4-2-1、子電路架構之比較 58 4-2-2、Ka-頻段CMOS 交互耦合雙推式壓控振盪器設計原理與流程 59 4-2-3、NP 互補式交互耦合雙推式振盪器架構之時變相位雜訊模型 63 4-3、Ka-頻段CMOS 交互耦合雙推式壓控振盪器之量測結果 70 4-4、晶片之結果與討論 74 第五章、結論 78 5-1、論文重點 78 5-2、論文貢獻 79 5-3、未來研究 79 參考文獻 80

    參考文獻
    [1] N. Nguyen,.M.Meyer, and R.G.;” Start-up and frequency stability in high-frequency oscillators,”
    Solid-State Circuits, IEEE Journal of Volume 27, Issue 5, May 1992 Page(s):810 – 820.
    [2] Guillermo Gonzalez, Microwave Transistor Amplifiers Analysis and Design Second Edition,
    Prentice Hall 1997.
    [3] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J.
    Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998.
    [4] M. Grozing, T. Stumpf, S. Hanger, andM. Betroth, “MOSFET thermal- and 1/f-noise modulating
    functions for the impulse sensitivity function theory of oscillator phase noise Microwave
    Conference,” 2004. 34th European Volume 2, 13 Oct. 2004 Page(s):949 - 952
    [5] Y. Tang and H. Wang, “Triple-push oscillator approach: Theory and experiments,” IEEE J.
    Solid-State Circuits, vol. 36, no. 10, pp. 1472–1479,Oct. 2001
    [6] R. G. Freitag, S. H. Lee, D. M. Krafcsil, D. E. Dawson, and J. E. Degenford, ‘Stability and
    improved circuit modeling considerations for high power MMIC amplifiers,” I988 IEEE MTT-S
    International Microwave Symposium Digest, New York, NY, pp. 125-128, May, 1988.
    [7] Ronald. Freitag “A Unified Analysis of MMIC Power Amplifier Stability,” 1992 IEEE MTT-S
    Digest.
    [8] J. E. Post, Jr., I. R. Linscott, and M. H. Oslick, “Waveform Symmetry Properties and Phase Noise
    in Oscillators,” Electron. Letter, vol. 34, no. 16, pp. 1547-1548, August 1998.
    [9] Sunkyu Choi, Yongsik Jeong, and Kyounghoon Yang”Low DC-Power Ku-Band Differential VCO
    Based on an RTD/HBT MMIC Technology,” IEEE Microwave and Wireless Components Letters,
    Vol. 15,No. 11, Nov. 2005
    [10] D. Baek, S. Ko, J. Kim, D. Kim, and S. Hong ,“Ku-band InGaP-GaAs HBT MMIC VCOs with
    balanced and differential topologies,” IEEE Trans. Microwave. Theory Tech., vol. 52, no. 4, pp.
    1353–1359, Apr. 2004.
    [11] V. Manan, S.I. Long,” A low power and low noise p-HEMT ku band VCO,” IEEE Microwave and
    Wireless Components Letters, VOL. 16, NO. 3, Mar. 2006
    [12] T.K.K.Tsang; M.N El-Gamal,”A high figure of merit and area-efficient low-voltage (0.7-1 V) 12
    GHz CMOS VCO,” Radio Frequency Integrated Circuits (RFIC) Symposium, 2003 IEEE 8-10
    June 2003 Page(s):89 - 92
    [13] Nam-Jin Oh; Sang-Gug Lee “11-GHz CMOS differential VCO with back-gate transformer
    feedback,”Microwave and Wireless Components Letters, IEEE see also IEEE Microwave and
    Guided Wave Letters Volume 15, Issue 11, Nov. 2005 Page(s):733 – 735
    [14] Yi-Jan Emery Chen, Wei-Min Lance Kuo, Jongsoo Lee, John D. Cressler Joy Laskar, and Greg
    Freeman,”A Low-Power Ka-Band Voltage-Controlled Oscillator Implemented in 200-GHz SiGe
    HBT Technology,” IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 5,
    May 2005.
    81
    [15] To-Po Wang , Ren-Chieh Liu, Hong-Yeh Chang , Liang-Hung Lu and Huei Wang,”A 22-GHz
    Push-Push CMOS Oscillator using Micro-machined Inductors,” IEEE Microwave and Wireless
    Component Letter, Vol. 15, No. 12, December 2005.
    [16] Belinda Piernas, and Kenjiro Nishikawa,”A Compact and Low-Phase-Noise Ka-Band
    pHEMT-Based VCO,” IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No.
    3, March 2003.
    [17] J. Lin, K. Y. Chen, D. A. Humphrey, R. A. Hamm, R. J. Malik, A. Tate, R. F. Kopf, and R. W.
    Ryan, “Ka-band monolithic InGaAs/InP HBT VCO’s in CPW structure,” IEEE Microw. Guided
    Wave Lett., vol. 5, no.11, pp. 379–381, Nov. 1995.
    [18] Xiao, H.; Tanaka, T.; Aikawa, M.”A Ka-band quadruple-push oscillator,” Microwave Symposium
    Digest, 2003 IEEE MTT-S International Volume 2,8-13 June 2003 Page(s):889 - 892 vol.2
    [19] Pietro Andrean , Xiaoyan Wang , Luca Vandi , and Ali Fard “A Study of Phase Noise in Colpitts
    and LC-Tank CMOS Oscillators,” IEEE Jounal ot Solid-State Circuits, Vol. 40, No. 5, May 2005.
    [20] Pietro Andreani, and Xiaoyan Wang ,“On the Phase-Noise and Phase-Error Performances of
    Multiphase LC CMOS VCOs,” IEEE Jounal ot Solid-State Circuits, VOL. 39, NO. 11, Nov. 2004.
    [21]鄒育霖 ”Ka與V頻段低相位雜訊雙推式振盪器之研製碩士論文”,中央大學,2006
    [22] To-Po Wang, Ren-Chieh Liu, Hong-Yeh Chang, Liang-Hung Lu, and Huei Wang, “A 22-GHz
    Push-Push CMOS Oscillator Using Micromachined Inductors,” IEEE Microwave and Wireless
    Components Letters, VOL. 15, NO. 12, December 2005
    [23] Yi-Hsien Cho, Ming-Da Tsai, Hong-Yeh Chang, Chia-Chi Chang, Huei Wang. “A Low Phase
    Noise 52GHz Push-Push VCO in 0.18mm Bulk CMOS Technologies,” 2005 IEEE Radio
    Frequency Integrated Circuits Symposium.
    [24] Ping-Chen Huang, Ren-Chieh Liu, Hong-Yeh Chang, Chin-Shen Lin, Ming-Fong Lei, Huei Wang,
    Chia-Yi Su'', and Chia-Long Chang “A 131 GHz Push-push VCO in 90-nm CMOS Technology,”
    2005 IEEE Radio Frequency Integrated Circuits Symposium.
    [25] Ming-Da Tsai, Yi-Hsien Cho, and Huei Wang, “A 5-GHz Low Phase Noise Differential Colpitts
    CMOS VCO” IEEE Microwave and Wireless Components Letters, Vol. 15, No. 5, May 2005.
    [26] KaChun Kwok and Howard C. Luong, Senior Member, IEEE ”Ultra-Low-Voltage
    High-Performance CMOS VCOs Using Transformer Feedback,” IEEE Journal of Solid-State
    Circuits, Vol. 40, No. 3, March 2005.
    [27] C.C. Meng, C.H. Chen, Y.W. Chang and G.W. Huang “5.4 GHz -127 dBc/Hz at 1MHz
    GaInP/GaAs HBT quadrature VCO using stacked transformers,” Electronics Letters 4th August
    2005 Vol. 41 No. 16.
    [28] C. C. Meng, Y. W. Chang, and S. C. Tseng ”4.9-GHz Low-Phase-Noise Transformer-Based
    Superharmonic-Coupled GaInP/GaAs HBT QVCO,” IEEE Microwave and Wireless Components
    Letters.
    [29] Behzad Razavi,”A Study of Phase Noise in CMOS Oscillator,” IEEE Journal of Solid-State
    Circuits, VOL. 31, NO. 3, March 1996.
    82
    [30] Emad Hegazi ,Henrik Sjöland, and Asad A. Abidi. ”A Filtering Technique to Lower LC Oscillator
    Phase Noise” IEEE Journal of Solid-State Circuits, Vol. 36, No. 12, December 2001.
    [31] 劉偉正, “ 應用於ISM 與Ka 頻段之射頻收發機前端電路研製,” 碩士論文,中央大學,2004
    [32] 陳一嘉, “ 5.5/14 GHz 壓控振盪器與髮夾式/環型耦合濾波器之研製” 碩士論文,中央大
    學,2005.

    QR CODE
    :::