跳到主要內容

簡易檢索 / 詳目顯示

研究生: 沈姿誼
Tzu-Yi Shen
論文名稱: 具硫基官能基之中孔洞材料 SBA-1 的合成與鑑定
Synthesis and Characterization of Cubic Mesoporous Silicas SBA-1 with Thiol Functionality
指導教授: 高憲明
Hsien-Ming Kao
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 94
語文別: 中文
論文頁數: 103
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    在本篇研究是以MPTMS ((3-Mercaptopropyl)trimethoxysilane) 與TEOS (Tetraethtyl orthosilicate) 為共同矽源,使用 C16TEABr (cetyltriethylammonium bromide) 作為模板試劑,在反應溫度為273 K下直接合成具有硫基官能基的中孔洞材料SBA-1,之後經由HCl / EtOH溶劑做萃取處理,移除模板後,得到的中孔洞材料仍然具有SBA-1的結構存在。研究發現硫基官能基化的中孔洞材料SBA-1,其MPTMS含量可達20%,對於中孔洞立方結構不會造成相轉變或是結構破壞,而其表面積、孔洞體積以及孔洞直徑均會隨MPTMS含量的增加而有遞減的趨勢。
    藉由改變不同的酸量、不同的水熱時間、不同的攪拌時間以及不同矽源,探討對於合成具有硫醇官能基的SBA-1的影響。在改變不同的酸量的方面,可以觀察到不同的結果,在XRD 的結果中,可發現隨著酸量的增加,可加入在SBA-1中的MPTMS 之含量也隨之增加,而在29Si MAS NMR也觀察到隨著酸量的增加,有助於中孔洞材料SBA-1結構的穩定。在水洗測試也可得知,加入官能基可以有效的改善SBA-1結構不能水洗及不能溶劑萃取的缺點。


    Abstract
    One-step synthesis of well-ordered cubic mesoporous silicas SBA-1 containing simultaneously tetraethoxysilane (TEOS) and 3-mercapto- propyltrimethoxysilane (MPTMS) and has been synthesized by cetyltriethylammonium bromide (CTEABr) under strongly acidic conditions. In order to get optimized the thiol-functionalized mesoporous silicas SBA-1 which has been studied by in a wide range of synthesis conditions. All kinds of results of formating the parameter, including the relative reagent concentration (TEOS/MPTMS ratio), HCl concentration, synthesis temperature, and hydrothermal time.
    The materials obtained were characterized by a variety of techniques including powder X-ray diffraction (XRD), nitrogen sorption measurements, 13C and 29Si magic angle spinning (MAS), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA).
    The lower TEOS/MPTMS ratios resulted in materials with higher functional group loadings. The direct synthesis of thiol- functionalized SBA-1 materials, the concentration of MPTMS that can co-condense with TEOS will be up to 20% without observing a significant loss in the structure order and uncontrollable phase transformation of the cubic SBA-1 mesostructure. The HCl concentration of change was found that can determine the stability of thiol-functionalized SBA-1 towards the solvent extraction treatment. The difference in the morphology between pure SBA-1 and thiol- functionalized SBA-1 becase of the incorporated MPTMS can slow down the condensation rate of TEOS.

    中文摘要.................................................... I 英文摘要.................................................... II 目錄........................................................ III 圖目錄...................................................... VI 表目錄...................................................... IX 第一章 序論............................................... 1 1-1 中孔洞分子篩材料的歷史............................... 1 1-2 界面活性劑性質簡介................................... 2 1-2.1 分子結構....................................... 2 1-2.2 界面活性劑種類................................. 4 1-2.3 微胞的形成..................................... 5 1-2.4 界面活性劑聚集的結構........................... 6 1-3 中孔洞形成機制....................................... 8 1-4 SBA-1簡介............................................ 10 1-4.1 SBA-1的形成機制................................ 11 1-4.2 SBA-1結構鑑定.................................. 12 1-5 中孔洞分子篩表面修飾................................. 14 1-6 表面修飾中孔洞分子篩之應用........................... 17 1-7 研究動機與目的....................................... 20 第二章 實驗部分............................................ 21 2-1 藥品................................................. 21 2-2 實驗步驟............................................. 22 2-2.1 合成界面活性劑 CTEABr.......................... 22 2-2.2 合成含硫基官能基的SBA-1(SH-SBA-1).............. 22 2-2.3 以溶劑萃取法移除含硫基官能基SBA-1孔洞中的模板.. 25 2-2.4 中孔洞分子材料 SH-SBA-1 吸附金屬離子實驗....... 25 2-3 實驗鑑定儀器......................................... 26 2-4 鑑定儀器之原理....................................... 26 2-4.1 X光繞射 (Powdr X-Ray Diffractometer;XRD)...... 26 2-4.2 氮氣吸脫附等溫曲線、表面積 與孔洞特性鑑定...... 27 2-4.3 固態核磁共振 (Solid State NMR)................. 32 2-4.3-1 去氫偶合 (proton decoupling)............... 33 2-4.3-2 魔角旋轉 (Magic Angle Spinning)............ 33 2-4.3-3 交叉極化 (Cross-Polarization, CP).......... 35 2-4.4 低真空掃描式電子顯微鏡 (LV-SEM)................ 36 2-4.5 熱重分析儀 (Thermo Gravimetric Analyzer;TGA).. 36 2-4.6感應耦合電漿原子發射光譜分析儀ICP-AES........... 37 第三章 結果與討論.......................................... 38 3-1 不同酸量下合成的中孔洞材料SH-SBA-1................... 38 3-1.1 XRD 結果...................................... 38 3-1.2 氮氣等溫吸脫附的結果.......................... 43 3-1.3 13C CP/MAS NMR 結果........................... 51 3-1.4 29Si MAS NMR 結果............................. 53 3-1.5 TGA 結果...................................... 59 3-1.6 SEM 結果...................................... 62 3-2 在不同水熱時間下合成的中孔洞材料SH-SBA-1............. 67 3-2.1 XRD 結果...................................... 67 3-2.2 氮氣等溫吸脫附的結果.......................... 66 3-2.3 29Si MAS NMR 結果............................. 68 3-3 不同矽源合成的中孔洞材料SH-SBA-1..................... 70 3-3.1 XRD 結果...................................... 70 3-3.2 氮氣等溫吸脫附的結果.......................... 72 3-3.3 29Si MAS NMR 結果............................. 74 3-4 在不同反應溫度合成的中孔洞材料SH-SBA-1............... 76 3-4.1 XRD 結果...................................... 76 3-4.2 氮氣等溫吸脫附的結果.......................... 79 3-4.3 SEM 結果...................................... 82 3-5 SH-SBA-1之水洗測試................................... 84 3-6 吸附金屬離子測試..................................... 86 第四章結論................................................. 87 參考文獻................................................... 88

    1. Lauher, J. W.; Hoffmann, R. J. Am. Chem. Soc. 1976, 98, 1729-1742.
    2. Heck, R. F.; Breslow, D. S. J. Am. Chem. Soc. 1961, 83, 4023-4027.
    3. Heck, R. F. Adv. Organomet. Chem. 1966, 4, 243.
    4. Bhatia, S. Zeolite catalysis principles and application, CRC press,
    Florida,1990.
    5. Imelik, B.; Naccache, Y.; Vedrine, J. C.; Coudurier, G.; Praliaud, H.
    Catalysis by zeolite, Elesevier, Amstordam, 1980.
    6. Ward, W.J. Molecular sieve catalysts, in applied industrial catalysis,
    Vol.3, Academic press, New York, 1984.
    7. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli J. C. and Beck, J. S.
    Nature, 1992 ,359 ,710.
    8. Beck, J. S ;Vartuli, J. C.; Roth, W. J. ; Leonowicz, M. E.; Kresge, C. T.
    Schmitt, K.D.; Chu, C. T – W.; Olson, D. H.; Sheppard, E. W.; Higgins,S.B.
    and Schlenker, J. L. J. Am. Chem. Soc., 1992, 114, 10834
    9. Sayari, A. Chem. Mater., 1996, 8, 1840.
    10.Neumann, R.; Khenkin, K. Chem. Commun. 1996, 23, 2643.
    11.Hartmann, M.; Popll, A.; Kenven, L. J. Phys. 1996, 100, 9906.
    12.Corma, A.; Navarro, M. T. ; Perez – Pariente, J. ; Sanchez, F. Stud. Surf.
    Sci. Catal. 1994, 84, 69.
    13.Wu, C. G.; Bein, T. Science, 1994, 266, 1757.
    14.Wu, C. G.; Bein, T Science, 1994, 266, 1013.
    15.Wu, C. G.; Bein, T Chem. Mater., 1994, 6, 1109.
    16.Ko, C. H.; Ryoo, R. J. Chem. Commun., 1995, 2467.
    17.Tsang, S. C.; Davis, J. J.; Green., M. L. H.; Hill, H. A. O.; Leung, Y.
    C.;Sadler, P.J. J. Chem. Soc. Che. Commun., 1995, 1803.
    18.Abe, T.; Tachibana, Y.; Uemtsu, T.; Iwamoto, M. J. Chem. Soc., Chem.
    Commun., 1995,1617.
    19.Vartuli, J. C.; Kresge, C. T.; Roth, W. J.; McCullen, S. B.; Beck, J. S.;
    Schmitt, K. D.; Leonowicz, M. E.; Lutner, J. D.; E. W. Sheppard in Advanced
    Catalysis and Nanostructured Materials: Modern Synthesis Methods (Ed: W. R.
    Moser), Academic Press, New York, 1996, pp.1-19.
    20.IUPAC Manual of Symbols and Terminology, Appendix 2, Part 1, Colloid and
    Surface Chemistry, Pure Appl. Chem. 1972, 31, 57-638.
    21.Todros, T. F. “Surfactant”, Academic Press, London, 1984.
    22.Lindman, B.; Wennerström, H. Micelle: Amphiphile Aggregation in Aqueous
    solution, Heidelberg, S.-V. 1980.
    23.Holmerg, K.; Jönsson, B.; Kronberg, B.; Lindman, B. “Surfants and Polymers
    in Aqueous Solution” 2nd ed., John Wiley & Sons Ltd, England, 2003.
    24.Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W. J. Chem. Soc.
    Faraday Trans. 1976, 72, 1525-1568.
    25.Tanford, C.“The Hydrophobic Effect: Formation of Micelles and Biological
    Membranes”, Wiley, New York, 1973.
    26.Evans, F. D.; Wennerstrom, H. “The Colloidal Domain”, 2nd Ed, VHC, New
    York, 1999.
    27.Qi, L.; Ma, J.; Cheng, H.; Zhao, Z. “Colloids and Surfaces A”, 1996,
    111, 195-202
    28.Firouzi, A.; Kumar, D.; Bull, L. M.; Besier,T.; Sieger, P.; Huo, Q.;
    Walker, S. A.; Zasadzinski, J. A.; Glinka, C.; Nicol, J.; Margolese, D.;
    Stucky, G. D.; Chmelka, G. F. Science. 1995, 267, 1138-1143
    29.Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger,P.;
    Leon, R.; Petroff, P. M.; Schüth, F.; Stucky, G. D. Nature. 1994,368, 317-
    321.
    30.Schubert, U.; Husing, N. Synthesis of inorganic materials, chapter 4 ,
    Wiley-Interscience publications: New York, 2000.
    31.Kim, M. J.; Ryoo, R. Chem. Mater. 1999, 11, 487-491
    32.Sakamoto, Y.; Kaneda, M.; Terasaki, O.; Zhao, D. Y.; Kim, J. M.; Stucky,
    G.; Shin, H. J.; Ryoo, R. Nature 2000, 408, 449-453
    33.Schierbaum, K. D.; Weiss, T.; Velzen, E. U. T. van; Engbersen, J. F. J.;
    Reinhoudt, D. N.; Gopel, W. Science. 1994, 265, 1413-1415.
    34.Liu, J. Feng, X.; Fryxell, G. E.; Wang, L.-Q.; Kim. A. Y.; Gong, M. L. Adv.
    Meter. 1998, 10, 161-165.
    35.Stein, A.; Melde, B. J.; Schroden, R. C. Adv. Meter. 2000, 12, 1403-1419.
    36.Steel, A.; Carr, S. W.; Anderson, M. W. Chem. Mater. 1995, 7,1829-1832.
    37.Fowler, C. E.;Burkett, S. L.;Mann, S. Chem. Commun. 1997, 1769.
    38.Feng, X.;Fryxell, G. E.;Wang, L. Q.;Kim, A. Y.;Liu, J.;Kemmer,K. M.
    Science 1997, 276, 923.
    39.Isabel D´ýaz, Federico Mohino, Joaqu´ýn Pérez-Pariente, Enrique Sastre.
    Thermochimica Acta 413 (2004) 201–207
    40.Price, N. P.;Stevent, L. Fundamentals of Enzymology Second Edition
    (Oxford New York)
    41.Yiu, H. H. P.;Botting, C. H.;Botting, N. P.;Wright, P. A. phys.
    Chem.Chem. Phys. 2001, 3, 2983-2985.
    42.Van Rhijn, W. M.;De Vos, D. E.;Sels, B. F.;Bossaert, W. M.;Jacobs,P. A.
    Chem. Commun. 1998, 317-318.
    43.Das, D.; Lee, J. F.; Cheng, S. Chem.Commun. 2001, 2178-2179.
    44.Margolese, D. ; Melero, J. A. ; Christiansen, S. C. ; Chmelka, B. F. and
    Stucky, G. D. Chem. Mater. 2000, 12, 2448-2459.
    45.Lim, M. H. Blanford, C.F. and Stein, A. Chem. Mater. 1998, 10,467-470.
    46.Asefa, T.; Kruk, M.; MacLachlan, M. J.; Coombs, N.; Grondey, H.; Jaroniec,
    M.; Ozin, G. A. Adv. Funct. Mater. 2001, 11, 447-456.
    47.Brunauer, S.; Deming, L. S.; Deming, W. E.; Teller, E. J. Am. Chem.Soc.
    1940, 62, 1723-1732.
    48.Hiemenz, P. C.; Rajagopalan, R. “Principles of Colloid and Surface
    Chemistry”, 3rd ed. Marcel Dekker, New York, 1997.
    49.Barrett, E. P.; Joyner, L. G.; Halenda, P. P. J. Am. Chem. Soc. 1951, 73,
    373-380.
    50.Bennett, A. E.; Rienstra, C. M.; Auger, M.; Lakshmi, K. V.; Griffin, R.
    G. J.Chem.Phys. 1995, 103, 6951.
    51.Lowe, I. J. Phys. Rev. Lett. 1959, 2, 285.
    52.Pines, A.; Gibby, M. G.; Waugh, J. S. J.Chem.Phys. 1972, 56, 1776.
    53.Feng, X.;Fryxell, G. E.;Wang, L. Q.;Kim, A. Y.;Liu, J.;Kemmer,
    K. M. Science 1997, 276, 923.
    54.Yang,L.M. ; Wang,Y.J. ; Luo, F.S. ; Dai ,Y.Y. Micropor. and Mesopor. Mater.
    2005, 84, 275-282.
    55.Wang, J. ; Yu, N. ; Zheng, A. ; Yang, J. ; Wu, D. ; Sun, Y. ; Ye, C.;
    Deng, F. Micropor. and Mesopor. Mater. 2006, 89, 219-226.
    56.Engelhardt, G.; Michel, D. “High-Resolution Solid-State NMR of Silicates
    and Zeolites”, John Wiley & Sons Inc, New York. 1988.
    57.Hamoudi, S.; Kaliaguine, S. Micropor. and Mesopor. Mater. 2003, 59, 195-204.
    58.Che, S. ; Sakamoto, Y. ; Terasaki, O. ; Tatsumi, T. Chem. Lett. 2002, 31,
    214-215.
    59.Peter, I. ; Alexander, V. Lamguir. 2002, 18, 1550-1560.

    QR CODE
    :::