| 研究生: |
黃靖麟 Ching-lin Huang |
|---|---|
| 論文名稱: |
聲波應力感測薄膜整合至具積體化光檢測器之矽光學平台 Monolithic Integration of Photo-detector on Silicon Optical Bench with Acoustic Sensing Membrane |
| 指導教授: |
伍茂仁
Mount-learn Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 波導 、光檢測器 、離子佈植 |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中提出一個矽波導光學平台,成功的將面射型雷射、光學檢測器及應力感測薄膜整合於一個元件中,達到一個具高封裝容忍度、低光學損耗的光學平台,驗證了未來應用於光學式麥克風的可行性。
矽光學平台主要是以半導體製程方式製作出具45°面的矽基波導並定義高分子聚合物及空氣導溝於結構中,於接收端佈植磷離子使之形成P-N接面作為光學檢測器,最後採用覆晶封裝技術將面射型雷射、應力感測薄膜整合於矽基光學感測平台中,當光學感測平台受到外部作用力,導致應力感測薄膜的薄膜因此作用力而產生應力位移量,進而影響矽基光學波導中的光通量,並透過離子佈植的方式檢測其光通量的變化,解析外部的慣性力。
矽基光學感測平台中,離子佈植的光檢測器響應度為0.3 A/W,以單模光纖光源入射於光學波導中的損耗,其得到的光電流值為155 A,效率為-3.8 dB,而封裝應力感測薄膜後插入損耗,其光電流值為125 A,效率為-4.8 dB。優化光學導波平台特性後,將面射型雷射及應力感測薄膜封裝於矽基光學感測平台,其得到的光電流值為96.9 A,效率為-3.3 dB,光暗電流訊雜比為20 dB。
In this research, we proposed a guided-wave silicon optical bench, which successfully integrates VCESL, sensing membrane and photo-detector for photo-acoustic sensor application. Such a optical bench has advantages including: high assembly tolerance, low optical loss, and monolithic photo-detector.
The guided wave silicon optical bench has a 45° reflector to efficiently couple the 850 nm light emitted by VCSEL in to polymer waveguide. The sensing membrane is inserted into the air trench on optical bench and the vibration is caused by external inertial force. The vibration of sensing membrane results a variation of optical flux monitored by monolithic photo-detector fabricated by ion implantation.
The monolithic photo-detector has a high responsivity of 0.3 A/W. When the light source emit into waveguide via SMF in this system, the .optical current is 125 mA. After optimization, the optical bench obtains optical current of 96.9 mA and efficiency of -3.3 dB after integrated VCSEL and sensing membrane by flip-chip bonding. The SNR of photo and dark current is 20 dB. Such a guided wave silicon optical bench provides a solution for photo-acoustic sensor development.
[1] Richard H. Dixon “Markets and applications for MEMS inertial sensors” Proc. of SPIE Vol. 6113, 611306, (2006)
[2] K. Maenaka “MEMS inertial sensors and their applications” in5th International Conference on Networked Sensing Systems, pp. 71-73, Kanazawa, Japan, (2008)
[3] Yong Li “A low-cost attitude heading reference system by combination of GPS and magnetometers and MEMS inertial sensors for mobile applications” Journal of Global Positioning System, Vol. 5, NO. 1-2:88-95(2006)
[4] Perlmutter, M., Robin, L. “High-performance, low cost inertial MEMS: A market in motion! ” ,PLANS, IEEE/ION, pp. 225-229, (2012)
[5] 呂如梅 國家奈米元件實驗室, “Introduction to MEMS Microphone Technolog,” 奈米通訊 NANO COMMUNICATION 20卷 No. 4.
[6] Karthik Kadirvel, Robert Taylor, Steve Horowitz, Lee Hunt, Mark Sheplak, Toshikazu Nishida, “Design and Characterization of MEMS Optical Microphone for Aeroacoustic Measurement,” American Institute of Aeronautics and Astronautics, Inc. with permission. the University of Florida, (2004)
[7] Kazuhiro Suzuki, Hideyuki Funaki and Yujiro Naruse, “MEMS optical microphone with electrostatically controlled grating diaphragm. ”Online at stacks.iop.org./MST/17/819, IOP publishing Ltd. Printed in the UK, (2006)
[8] Masashi Ohkawa, Manabu Hayashi, Hiroyuki Nikkuni, Noriyuki Watanabe, and Takashi Sato, “Feasibility of a Silicon-Based Guided-Wave Optical Microphone,” Optical Society America, (2008)
[9] 林期祥, “Optical Performance of Guided-Wave Silicon Optical Bench with Inertial Sensing Element,” 中央大學光電所碩士論文, 台灣 (2014)
[10] 梁凱, “Intra-Chip 10-Gbps Optical Interconnect Module Using Polymer Waveguide with Silicon-Based 45˚Micro-Reflectors,” 中央大學光電所碩士論文, 台灣 (2011).
[11] 陳瑞泓, “On-Chip 20-Gbps Optical Interconnect Modules Using Polymer Waveguides Terminated with 45-degree Reflectors as Vertical Couplers,” 中央大學光電所碩士論文, 台灣 (2012).
[12] 陳進達, “以矽基光學平台為基礎之4通道 × 10-Gbps光學連接模組之接收端研究,” 中央大學光電碩士論文, 台灣 (2010)
[13] 許志宏, “具繞射式光學元件之矽基45微反射面研究,” 中央大學光電所碩士論文, 台灣 (2007)
[14] James F. Gibbons, “Ion Implantation in Semiconductors-Part II: Damage Production and Annealing, ” IEEE, Vol. 60, pp. 1062-1096, (2005)
[15] Kun-Mo Chu, Jung-Sub Lee, Byung Sup Rho, Han Seo Cho, Hyo-Hoon Park, and Duk Young Jeon. “Optimization of low temperature flip chip bonding for VCSEL arrays for polymeric-waveguide-integrated optical interconnection systems,” 9th Microoptics Conference MOC’03, 29-31, (2003)