跳到主要內容

簡易檢索 / 詳目顯示

研究生: 邱瑋國
Ciou,Wei-Guo
論文名稱: 類弦波反電動式無刷直流馬達之SVPWM研究
Non-sinusoidal back electromotive force brushless DC motor of SVPWM research
指導教授: 徐國鎧
Kuo-Kai Shyu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 88
中文關鍵詞: SVPWM反電動勢諧波分析切換損耗無刷馬達
外文關鍵詞: SVPWM, back-EMF, harmonic component, switching loss, BLDC
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究討論馬達只有霍爾傳感器情況下,使用基礎的空間向量脈波寬度調變,相較於六步控制可以提升馬達在各轉速與負載下的效率、並使馬達對於外部負載變化可以有更好的響應、提高馬達最大力矩輸出;另外地提出空間向量脈波寬度調變電壓向量的,排列方式調整以減少反流器切換損耗,並配合三相電流流動方向調整電壓向量的排列方式,藉由電壓向量排列方式與三相電流方向,調控MOS開關切換方式提高馬達運轉時效率。
    市售的無刷馬達的反電動勢從標準梯形波到弦波都可以出現,甚至帶有諧波成分的類弦波,本研究針對個別馬達反電動勢進行波形分析,將具有諧波成分經過演算法加入空間向量脈波寬度調變,讓調整過的空間向量脈波寬度調變驅動對應馬達時可以有較理想的相電流,並使用噪音計量測六步方波控制、SVPWM、調整後SVPWM,三種控制方法在運轉時噪音大小,驗證馬達運轉時高頻噪音的差異。


    The study consider the motor only with the Hall sensor motor, and still can use under different the space vector pulse width modulation to improve motor efficiency speed and load infinite compared with six-steps control. The designed SVPWM could increase the maximum torque output. Also, properly arranging the SVPWM voltage vector pattern can reduce switching loss. In accordance with the motor three-phase current, this study adjusts the SVPWM voltage vector pattern. To reducing switching losses and enhance the motor efficiency.
    The back-EMF of brushless DC motor include trapezoidal wave, sine wave, and even sine wave with harmonic components. The study analysis motor back-EMF first, and then add the harmonic components into the space vector pulse width modulation. Thus the adjusted space vector pulse width modulation drive can have more ideal motor phase current. Moreover, a sound meter is used to measure noises induced by six-step control, SVPWM, adjusted SVPWM.

    目錄 摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第1章 緒論 1 1.1 研究動機與目的 1 1.2 大綱 3 第2章 無刷馬達介紹 4 2.1 前言 4 2.2 無刷直流馬達與永磁同步馬達簡介 4 2.2.1 無刷直流馬達介紹 4 2.2.2 無刷直流馬達數學模式 5 2.2.3 永磁同步馬達介紹 8 2.2.4 永磁同步馬達數學模式 9 2.3 本文研究之馬達介紹 16 第3章 控制電路設計 18 3.1 MOSFET介紹 18 3.2 MOS開關驅動電路設計 18 3.3 微處理器 19 3.4 錳銅電阻電路設計 21 3.5 降壓電路設計 23 3.6 霍爾傳感器濾波電路 24 第4章 馬達控制 25 4.1 霍爾傳感器 25 4.1.1 霍爾傳感器介紹 25 4.1.2 霍爾訊號修正 26 4.2 位置估測、速度估測 27 4.2.1 速度估測 27 4.2.2 位置估測 28 第5章 空間向量脈波寬度調變 30 5.1 SVPWM導通 30 5.2 SVPWM導通調整 36 5.3 SVPWM導通改良 42 第6章 反電動勢分析與改善 47 6.1 無刷馬達反電動勢量測 47 6.2 反電動勢諧波成份分析 49 6.3 SVPWM對應諧波訊號改善 50 第7章 測試設備與測量結果 54 7.1 馬達測試設備介紹 54 7.2 硬體電路介紹 55 7.3 效率比較、轉矩輸出 56 7.3.1 效率比較 57 7.3.2 轉矩比較 60 7.4 噪音量測 63 第8章 結論 67 8.1 結論 67 8.2 未來展望 67 參考文獻 68

    [ 1 ] Jaldanki Sreenivasa Siva Prasad, Gopalaratnam Narayanan, “Minimum switching loss pulse width modulation for reduced power conversion loss in reactive power compensators”, IET Electron. Power Appl., Vol. 7, No. 3, pp.545-551, March 2014.
    [ 2 ] Zhao, D., Hari, V.S.S.P.K., Narayanan, G., Ayyanar, R, “Space-vector-based hybrid pulsewidth modulation techniques for reduced harmonic distortion and switching loss”, IEEE Trans. Power Electron., Vol. 25, No. 3, pp. 760–774, March 2010.
    [ 3 ] Trzynadlowski, A.M., Legowski, S., “Minimum-loss vector PWM strategy for three-phase inverters”, IEEE Trans. Power Electron., Vol. 9, No. 1, pp. 26–34, January 1994.
    [ 4 ] Nguyen, N.V., Nguyen, B.X., Lee, H.H., “An optimized discontinuous PWM method to minimize switching loss for multilevel inverters”, IEEE Trans. Ind. Electron., Vol. 58, No. 9, pp. 3958–3966, September 2011.
    [ 5 ] Yunxiang Wu., Shafi, M.A., Knight, A.M., McMohan, R.A., “Comparison of the effects of continuous and discontinuous PWM schemes on power losses of voltage-sourced inverters for induction motor drives”, IEEE Trans. Power Electron., Vol. 26, No. 1, pp. 182–191, January 2011.
    [ 6 ] Zhao, D., Narayanan, G., Ayyanar, R., “Switching loss characteristics of sequences involving active state division in space vector based PWM”. Proc. IEEE Applied Power Electronics Conf. (APEC)., Vol. 1, pp. 479–485, February 2004.
    [ 7 ] Narayanan, G., Krishnamurthy, H.K., Zhao, D., Ayyanar, R., “Advanced bus-clamping PWM techniques based on space vector approach”, IEEE Trans. Power Electron., Vol. 21, No. 4, pp. 974–984, July 2006.
    [ 8 ] Holmes, D.G., Lipo, T.A., “Pulse width modulation for power converters: principles and practice”, Wiley-IEEE Press., Edi. 1, pp. 57-94, 2003.
    [ 9 ] Bhavsar, T., Narayanan, G., “Harmonic analysis of advanced bus-clamping PWM techniques”, IEEE Trans. Power Electron., Vol. 24, No. 10, pp. 2347–2352, October 2009.
    [ 10 ] Hari, V.S.S., Narayanan, G., “Space vector based hybrid PWM technique to reduce line current distortion in induction motor drives”, IET Power Electron., Vol. 5, No. 8, pp. 1463–1471, September 2012.
    [ 11] Basu, K., Siva Prasad, J.S., Narayanan, G., Krishnamurthy, H.K., Ayyanar, R., “Reduction of torque ripple in induction motor drives using an advanced hybrid PWM technique”, IEEE Trans. Ind. Electron., Vol. 57, No. 6, pp. 2085–2091, June 2010.
    [ 12] Houldsworth, John A., Grant, Duncan A., “The use of harmonic distortion to increase the output voltage of a three-phase PWM inverter”, IEEE Trans. Ind. Appl., Vol. IA-20, No. 5, pp. 1224–1228, September 1984.
    [ 13 ] van der Broeck, H.W., Skudelny, H.-C., “Analytical analysis of the harmonic effects of a PWM ac drive”, IEEE Trans. Power Electron., Vol. 3, No. 2, pp. 216–223, Aprill 1988.
    [ 14 ] van der Broeck, H.W., “Analysis of the harmonics in voltage fed inverter drives caused by PWMschemes with discontinuous switching operation”, in Proc. EPE, pp. 261–266, September 1991.
    [ 15 ] Fukuda S., Suzuki K., “Harmonic evaluation of two-level carrier-based PWM methods,” in Proc. EPE, pp. 331– 336, September 1997.
    [ 16 ] Narayanan G., Ranganathan V. T., “Analytical evaluation of harmonic distortion in PWMAC drives using the notion of stator flux ripple”, IEEE Trans. Power Electron., Vol. 20, No. 2, pp. 466–474, March 2005.
    [ 17 ] Wells J. R., Geng X., Chapman P. L., Krein P. T., Nee B. M., “Modulation-based harmonic elimination”, IEEE Trans. Power Electron., Vol. 22, No. 1, pp. 336–340, January 2007.
    [ 18 ] Lopes L. A. C., Naguib M. F., “Space vector modulation for low switching frequency current source inverters with reduced low-order noncharacteristic harmonics”, IEEE Trans. Power Electron., Vol. 24, No. 4, pp. 903–910, April 2009.
    [ 19 ] Mehrizi-Sani A., Filizadeh S., “An optimized space vector modulation sequence for improved harmonic performance”, IEEE Trans. Ind. Electron., Vol. 56, No. 8, pp. 2894–2903, August 2009.
    [ 20 ] 李銘恆,「無刷直流馬達具啟動調整策略之無感測驅動器研製」,國立中央大電機工程學系,碩士論文,民國101年6月。
    [ 21 ] Fei Yang, Chenguang Jiang, Taylor A., Hua Bai, “Design of a High-Efficiency Minimum-Torque-Ripple 12-V/1-kW Three-Phase BLDC Motor Drive System for Diesel Engine Emission Reductions”, IEEE Trans. Vehicular techology., Vol. 48, No. 6, pp. 3107–3115, November 2012.
    [ 22 ] 詹佳晉,「結合模糊控制並以反電動勢為基礎之無感測永磁同步馬達驅動系統」,國立中央大學電機工程學系,碩士論文,民國102年6月。
    [ 23 ] Stirban, A., Boldea I., “Motion-Sensorless Control of BLDC-PM Motor With Offline FEM-Information-Assisted Position and Speed Observer”, IEEE Trans. Industry Applications., Vol. 63, No. 7, pp. 1950–1958, September 2014.
    [ 24 ] dsPIC30F5015/5016 Datasheet, Microchip, 2007
    [ 25 ] 劉剛編著,「永磁無刷直流電機控制技術與應用」,機械工業出版社,民國97年。

    QR CODE
    :::