跳到主要內容

簡易檢索 / 詳目顯示

研究生: 杜俊育
Jiun-Yu Tu
論文名稱: 視訊串流於異質行動多媒體網路傳輸之無縫服務機制
Seamless Service Mechanisms for Video Streams over Heterogeneous Mobile Multimedia Networks
指導教授: 吳中實
Jung-Shyr Wu
口試委員:
學位類別: 博士
Doctor
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
畢業學年度: 100
語文別: 英文
論文頁數: 106
中文關鍵詞: 無縫服務無縫換手IP多媒體子系統可調式視訊編碼
外文關鍵詞: seamless service, seamless handover, MIH, IMS, SVC
相關次數: 點閱:23下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 行動通訊技術近年快速發展。高傳輸頻寬及愈見精巧的服務品質保證機制,帶引多樣化的多媒體應用之實現。現下,多媒體內容的傳輸已經成為行動通訊網路資源消耗的大宗。因此,提供適切的存取技術來讓終端使用者在行動多媒體應用的使用上感到流暢,已是重要的議題。
    事實上,行動通訊網路因提供移動性給終端使用者,而在通訊市場上獲得空前的成功。藉由移動性,行動中的使用者可以讓服務持續不斷。但移動性本身卻帶來無縫換手的議題亟待更有效的解決。
    以網路技術的發展趨勢而論,下個世代的多媒體通訊係架構在all-IP的核心網路上,並整合異質性的接取網路以建構“隨處”的多媒體通訊環境。下個世代的多媒體網路不但提供通訊中訊務的移動性,並將提供服務的移動性,以達到隨處運算之隨時、隨地以任意設備進行通訊服務的目標。這將使移動性的議題變得更有彈性,但卻更為棘手。
    在下個世代的多媒體通訊架構的原則下,3GPP提出IMS架構來達到提供服務動性的目標。IMS係為一整合性的多媒體服務平台,以標準SIP為該架構核心層的標準信令而提供一個易於開發並佈建多元化多媒體服務的環境。IMS的核心層架構於異質性接取網路之上,因此除了提供上述的服務移動性 (Service Mobility) 外,亦可提供行動訊務的通訊移動性 (Session Mobility)。但如上所述,該環境引發較為複雜的換手流程,使得流暢的多媒體服務之提供更為棘手。細究IMS的換手,我們發現在IMS環境下換手的行動終端使用者勢必面臨多層的換手機制而導致極為可觀的換手延遲。這可觀的換手延遲確實將對行動多媒體服務的流暢性帶來嚴重的傷害,尤其對於即時性的服務。此外,IMS所整合的異質性行動接取網路,各個網路間在服務品質保證機制及定義上的差異以及具時變特性的通訊通道俱會對穩定而流暢的提供多媒體通訊服務產生不良的影響。
    在這論文中,為解決上述的問題,我們在編碼技術上採用可調式視訊編碼(SVC)來提供行動終端使用者視訊串流的服務。SVC為階層編碼型的技術,用之可使異質性接取網路各個網路間在服務品質差異以及時變通訊通道對服務流暢度所帶來的負面影響得到改善。但因現行的網路架構係依OSI網路模型而建立,分層間彼此的透通性將令SVC的特性遭受戕害。是以,此論文將針對此現象對SVC提出一個橫跨MAC層、網路層以及應用層的跨多層服務品質保證機制與策略。該機制將揭露SVC視訊編碼技術的重要指標給下層的網路節點,以令網路節點進行最適切的資源規劃。除SVC外,此論文亦將在IMS的整合架構下提出一個無縫服務的促進方案。該促進方案將引進媒介獨立換手服務(MIH)並大幅度的改善IMS的行動終端在換手時所產生的換手延遲。而此論文所提出之主動是換手機制則可令SVC視訊串流服務在IMS環境下透過資料緩衝的機制填補上述促進方案所遺留的服務間隙(Service Gap)而達到真正的無縫服務的目標,亦即真正流暢之行動可調式視訊串流服務。
    末後,此論文將以系統模擬的結果來驗證所提的方案的優異性。


    By the rapidly evolving mobile communication technologies, broad transmission bandwidth and sophisticated Quality of Service guarantee mechanisms enable plenty of multimedia applications. Today, multimedia contents have dominated the consumption of wireless communication network resources. Providing suitable access technologies to smooth subscribers'' experiences in multimedia service consumption is much crutial.
    In fact, mobile communication networks bring mobility to mobile subscribers and win significantly success in modern communication markets. The mobility provides session continuity to mobile subscribers and assists them to obtain some level of ``smooth'' to their consuming applications. However, seamless handover has still been one of the main issues to provide service smoothly to mobile subscribers.
    Toward the next generation multimedia communication, all-IP core networks and heterogeneous access networks would construct ubiquitous multimedia communication environments. The Next Generation Multimedia Network (NGMN) would provide not only session mobility, but also service mobility to subscribers. The ubiqutous communication enables multimedia subscribers access their interested multimedia services using anydevice at anytime, in anyplace. The mobility becomes more flexible but knotty.
    The 3rd Generation Partnership Project proposes IP multimedia subsystem to build the NGMN. The IP multimedia subsystem is an integrated platform for developing and deploying multimedia applications speedy and easily. It overlays heterogeneous access networks, including fixed and mobile ones, to support service mobility to subscribers. Thus, heterogeneous handover is unavoidable but much difficult while one considers smoothly services. When investigating the mobile services in the IP multimedia subsystem, we find that the services suffer from several handover latencies. The latencies prevent various of multimedia services which are usually real-time from serving smoothly. In addition, inconsistent Quality of Service policies and distinct mechanisms between heterogeneous access networks corrupt the smooth, besides varing channel conditions.
    In this dissertation, we invoke the scalable video coding (SVC) scheme to provide streaming video services over the IP multimedia subsystem. The scalable video coding scheme utilizes layered-based technology to overcome the inconsistency between heterogeneous access networks and radio channel conditions. The scheme can support smooth services to mobile subscribers in its design spirit, however, the existing Open Systems Interconnection (OSI) model-based networks hide the efficiency. This dissertation, thus, first exposes the importance of the SVC-encoded video data to existing OSI-based network nodes. By the exposure, the network nodes can successfully perform conscientious protection to more important parts of SVC-encoded video data, and invoke the scalability of the SVC scheme to obtain smooth service from application aspect. Furthermore, this dissertation introduces Media Independent Handover (MIH) service to the IP Multimedia Subsystem, and proposes a Fast IMS Service Recovery Mechanism (FISERM) to mitigate handover latencies in heterogeneous access networks. The Media Independent Handvoer service assists mobile subscribers to handover between mobile access network smoothly. In addition, this dissertation invokes the MIH service to achieve seamless servoce. In fact, seamless service is preferred rather than seamless handover in the design of FISERM. The seamless service considers not only lower-layer handover procedures between heterogeneous access networks, but also application layer handover that the IP Multimedia Subsystem invokes for service mobility and Quality of Service guarantee.
    Finally, this dissertation proposes an active seamless service scheme to the SVC streaming video services over IP multimedia subsystem. The active seamless service scheme get really seamless service to SVC streaming video services by an advanced buffer filling strategy. The strategy fills the service gap that starves the video buffer of the streaming video services and disturbes the playback. System simulations evidence that the proposed schemes provide outstanding performance to the real-time multimedia service over the IP Multimedia Subsystem, expecially for Scalable Video Coding streaming video services.

    1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Scope ofWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Scalable Video Coding and Next Generation Multimedia Networks . . . . . . . . 4 1.3.1 Briefs of the Scalable Video Coding Scheme . . . . . . . . . . . . . . . . . 5 1.3.2 QoS Guarantee Mechanism in Mobile Worldwide Interoperability for Microwave Access Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.3 IP Multimedia Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3.4 Briefs of theMedia Independent Handover Service . . . . . . . . . . . . . 13 1.4 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2 Cross-layer Prioritizing Mobile SVC Streaming Video Service 19 2.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 ProblemFormulation and Proposed CrossMultilayer Mechanism . . . . . . . . . 21 2.2.1 ProblemFormulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.2 Application Layer to Network LayerMapping Strategy . . . . . . . . . . . 22 2.2.3 IP Layer toMobileWiMAXMAC Layer QoSMapping . . . . . . . . . . 24 2.3 Case Studies and Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.1 Settings and Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.2 Case Study I: A Scalable SVC Bit Stream with Temporal and Quality Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.3 Case Study II: A Scalable SVC Bit Stream with Temporal and Spatial Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.4 Simulation Results and Discussions . . . . . . . . . . . . . . . . . . . . . . 30 2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3 Advanced Passive Seamless Multimedia Service Recovery 39 3.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2 IMS-Integrated Heterogeneous Environments . . . . . . . . . . . . . . . . . . . . 43 3.2.1 IMS Service Roaming Procedure . . . . . . . . . . . . . . . . . . . . . . . 43 3.2.2 IMS Service Roaming overlaying MIH-Enabled GPRS Network . . . . . . 46 3.3 Proposed Fast Service Recovering Handover Procedure . . . . . . . . . . . . . . . 47 3.3.1 First Phase: Selection of Candidate Networks . . . . . . . . . . . . . . . . 49 3.3.2 Second Phase: Candidate Network Commitment and IMS QoS Pre-negotiation 50 3.3.3 Third Phase: Handover Execution and Service Recovery . . . . . . . . . . 53 3.4 Performance Analysis Model for IMS Service Recovery Signaling Procedures . . . 57 3.4.1 Performance Analysis of the Proposed FISERM Procedure . . . . . . . . 57 3.4.2 Performance Analysis of the MIH-capable Standard MIHSTD Procedure . 62 3.4.3 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4 Active Seamless SVC Streaming Video Service 69 4.1 ProblemFormulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.2 Proposed Handover Scenario for SVC Video Streaming Service . . . . . . . . . . 70 4.3 Proposed Novel Handover Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.3.1 Buffer ControlModel for SVC Video Stream . . . . . . . . . . . . . . . . 72 4.4 Simulation Settings and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.4.1 Packet Scheduling Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.4.2 Video Source Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5 Conclusions and Future Work 83 5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.2 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

    [1] 3rd Generation Partnership Project. Service requirements for the Internet Protocol (IP)
    multimedia core network subsystem, Stage 1, 2007. 3GPP TS 22.228.
    [2] G. P. Silvana and H. Schulzrinne. Sip and 802.21 for service mobility and pro-active authentication.
    In Communication Networks and Services Research Conference (CNSR 2008),
    pages 176–182, May 2008.
    [3] L. Ma and L. Rui. An end-to-end qos frame in multimedia provision for tight-coupled
    interworking of ims and wimax. In IEEE International Conference on Networking, Sensing
    and Control (ICNSC 2008), pages 1153–1157, April 2008.
    [4] T. Stutz and A. Uhl. A survey of h.264 avc/svc encryption. IEEE Transactions on Circuits
    and Systems for Video Technology, 22(3):325–339, March 2012.
    [5] H. Schwarz, D. Marpe, and T. Wiegand. Overview of the scalable video coding extension of
    the h.264/avc standard. IEEE Transactions on Circuits and Systems for Video Technology,
    17(9):1103–1120, September 2007.
    [6] Internet Engineering Task Force. RTP: a transport protocol for real-time applications, 2003.
    RFC 3550.
    [7] Internet Engineering Task Force. RTP payload format for SVC video, 2009. Internet draft:
    draft-ietf-avt-rtp-svc-18.txt.
    [8] ITU-T. Advanced video coding for generic audiovisual services, 2007. ITU-T Recommendation
    H.264.
    [9] C. A. Segall and G. J. Sullivan. Spatial scalability within the h.264/avc scalable video coding
    extension. IEEE Transactions on Circuits and Systems for Video Technology, 17(9):1121–
    1135, September 2007.
    [10] Joint Video Team. Hierarchical pictures, 2005. Doc. JVT-P014.
    [11] H. Schwarz, D. Marpe, and T. Wiegand. Analysis of hierarchical b pictures and mctf. In
    IEEE International Conference on Multimedia and Expo (ICME 2006), pages 1929–1932,
    July 2006.
    [12] R. Gupta, A. Pulipaka, P. Seeling, L. J. Karam, and M. Reisslein. H.264 coarse grain
    scalable (cgs) and medium grain scalable (mgs) encoded video: A trace based traffic and
    quality evaluation. IEEE Transactions on Broadcasting, 2012.
    [13] M. Wien, H. Schwarz, and T. Oelbaum. Performance analysis of svc. IEEE Transactions
    on Circuits and Systems for Video Technology, 17(9):1194–1203, September 2007.
    [14] E. Maani and A. K. Katsaggelos. Optimized bit extraction using distortion modeling in the
    scalable extension of h.264/avc. IEEE Transactions on Image Processing, 18(9):2022–2029,
    September 2009.
    [15] Joint Video Team. Joint scalable vide model JSVM-11, 2007. Doc. JVT-X202.
    [16] Institute of Electrical and Electronics Engineers. IEEE standard for local and metropolitan
    area networks - part 16: air interface for fixed and mobile broadband wireless access systems,
    amendment 2: physical and medium access control layers for combined fixed and mobile
    operation in licensed bands and corrigendum 1, 2006. IEEE Std 802.16e.-2005 and IEEE
    Std 802.16.-2004/Cor1-2005.
    [17] 3rd Generation Partnership Project. Signalling flows for the IP multimedia call control
    based on Session Initiation Protocol (SIP) and Session Description Protocol (SDP), Stage
    3, 2006. 3GPP TS 24.228.
    [18] C.-F. Lai and M. Chen. Playback-rate based streaming services for maximum network
    capacity in ip multimedia subsystem. IEEE Systems Journal, 5(4):555–563, December
    2011.
    [19] G. Camarillo and M. A. Garcia-Martin. The 3G IP multimedia subsystem (IMS) : merging
    the Internet and the cellular worlds. John Wiley & Sons Ltd., 2nd edition, 2006.
    [20] M. Poikselka, G. Mayer, H. Khartabil, and A. Niemi. The IMS : IP multimedia concepts
    and services. John Wiley & Sons Ltd., 2nd edition, 2006.
    [21] 3rd Generation Partnership Project. End-to-end Quality of Service (QoS) signaling flows,
    2007. 3GPP TS 29.208.
    [22] Institute of Electrical and Electronics Engineers. IEEE standard for local and metropolitan
    area networks - Part 21: media independent handover services. IEEE 802.21.
    [23] A. De La Oliva, A. Banchs, I. Soto, T. Melia, and A. Vidal. An overview of ieee 802.21:
    media-independent handover services. IEEE Wireless Communications, 15(4):96–103, August
    2008.
    [24] J.-Y. Tu, J.-S.Wu, and C.-F. Hsu. A cross-multilayer mechanism design for improving video
    quality of svc coded video streams over mobile wimax networks. International Journal of
    Internet Protocol Technology, 6(1/2):123–134, June 2011.
    [25] T. C. Thang, J. W. Kang, J.-J. Yoo, and Y. M. Ro. Optimal multilayer adaptation of svc
    video over heterogeneous environments. Advances in Multimedia, 2008(2):7:1–7:8, Januray
    2008.
    [26] T. C. Thang, Y. S. Kim, Y.M. Ro, J. W. Kang, and J.-G. Kim. Svc bitstream adaptation in
    mpeg-21 multimedia framework. Journal of Zhejiang University SCIENCE A, 7(5):764–772,
    May 2006.
    [27] J Huusko, J Vehkapera, P Amon, C Lamy-Bergot, G Panza, J Peltola, and M G Martini.
    Cross-layer architecture for scalable video transmission in wireless network. Signal
    Processing Image Communication, 22(3):317–330, March 2007.
    [28] H.-H. Juan, H.-C. Huang, C.-Y. Huang, and T. Chiang. Cross-layer mobile wimax mac
    designs for the h.264/avc scalable video coding. Wireless Networks, 16(1):113–123, January
    2010.
    [29] O. I. Hillestad, A. Perkis, V. Genc, S. Murphy, and J. Murphy. Adaptive h.264/mpeg-4 svc
    video over ieee 802.16 broadband wireless networks. In Packet Video 2007, pages 26–35,
    November 2007.
    [30] T. C. Thang, J. W. Kang, J.-J. Yoo, and J.-G. Kim. Multilayer adaptation for mgs-based
    svc bitstream. In ACM international conference on Multimedia (ACM MM 2008), pages
    689–692, October 2008.
    [31] H.-L. Chen, P.-C. Lee, and S.-H. Hu. Improving scalable video transmission over ieee
    802.11e through a cross-layer architecture. In International Conference on Wireless and
    Mobile Communications (ICWMC 2008), pages 241–246, August 2008.
    [32] E. Haghani, S. Parekh, D. Calin, E. Kim, and N. Ansari. A quality-driven cross-layer
    solution for mpeg video streaming over wimax networks. IEEE Transactions on Multimedia,
    11(6):1140–1147, October 2009.
    [33] Internet Engineering Task Force. RTP payload format for H.264 video, 2005. RFC 3984.
    [34] Internet Engineering Task Force. User datagram protocol, 1980. RFC 768.
    [35] Internet Engineering Task Force. Internet Protocol, 1981. RFC 791.
    [36] S. Wenger, Ye-Kui Wang, and T. Schierl. Transport and signaling of svc in ip networks.
    IEEE Transactions on Circuits and Systems for Video Technology, 17(9):1164–1173,
    September 2007.
    [37] Yuv.
    available at http://en.wikipedia.org/wiki/YUV.
    [38] The network simulator - ns-2.
    available at http://www.isi.edu/nsnam/ns/.
    [39] Joint scalable video model software.
    available at http://ip.hhi.de/imagecom G1/savce/downloads/SVCReference-Software.htm.
    [40] The wimax module for ns-2.
    available at http://ndsl.csie.cgu.edu.tw/wimax ns2.php.
    [41] J.-S. Wu and J.-Y. Tu. A fast ims service recovery mechanism for the handover over mihcapable
    heterogeneous networks. Wireless Personal Communications, pages 1–27, March
    2012.
    [42] K. Taniuchi, Y. Ohba, V. Fajardo, S. Das, M. Tauil, Y.-H. Cheng, A. Dutta, D. Baker,
    M. Yajnik, and D. Famolari. Ieee 802.21: Media independent handover: Features, applicability,
    and realization. IEEE Communications Magazine, 47(1):112–120, January 2009.
    [43] B.-K. Kim, Y.-C. Jung, I. Kim, and Y.-T. Kim. Enhanced fmipv4 horizontal handover with
    minimized channel scanning time based on media independent handover (mih). In IEEE
    Network Operations and Management Symposium Workshops (NOMS 2008), pages 52–55,
    April 2008.
    [44] N. Banerjee, W. Wu, K. Basu, and S. K. Das. Analysis of sip-based mobility management
    in 4g wireless networks. Computer Communications, 27(8):697–707, May 2004.
    [45] A. Munir and A. Gordon-Ross. Sip-based ims signaling analysis for wimax-3g interworking
    architectures. IEEE Transactions on Mobile Computing, 9(5):733–750, May 2010.
    [46] T. Guenkova-Luy, A.J. Kassler, and D. Mandato. End-to-end quality-of-service coordination
    for mobile multimedia applications. IEEE Journal on Selected Areas in Communications,
    22(5):889–903, June 2004.
    [47] L. Skorin-Kapov, M. Mosmondor, O. Dobrijevic, and M. Matijasevic. Application-level qos
    negotiation and signaling for advanced multimedia services in the ims. IEEE Communications
    Magazine, 45(7):108–116, July 2007.
    [48] H. Lee, B. Moon, and A. H. Aghvami. Enhanced sip for reducing ims delay under wifi-toumts
    handover scenario. In International Conference onNext Generation Mobile Applications,
    Services and Technologies (NGMAST 2008), pages 640–645, September 2008.
    [49] M. Ulvan and R. Bestak. Delay performance of session establishment signaling in ip multimedia
    subsystem. In International Conference on Systems, Signals and Image Processing
    (IWSSIP 2009), pages 1–5, June 2009.
    [50] K. L. Larsen, H.-P. Schwefel, and G. Kuhn. Migration of the security association for fast
    sip mobility within the ip multimedia subsystem. In International Symposium on Wireless
    Personal Multimedia Communications (WPMC 2006), pages 512–516, September 2006.
    [51] T. Renier, Kim Lynggarg Larsen, G. Castro, and H.-P. Schwefel. Mid-session macromobility
    in ims-based networks. IEEE Vehicular Technology Magazine, 2(1):20–27, March
    2007.
    [52] N. H. Thanh, N. T. Hung, T. N. Lan, T. Q. Thanh, D. Hanh, and T. Magedanz. msctpbased
    proxy in support of multimedia session continutity and qos for ims-based networks. In
    International Conference on Communications and Electronics (ICCE 2008), pages 162–168,
    June 2008.
    [53] N. H. Thanh, L. T. Hang, N. Q. Thu, V. V. Yem, and N. X. Dung. Multimedia session
    continuity with context-aware capability in ims-based network. In International Symposium
    on Wireless Communication Systems (ISWCS 2009), pages 383–387, September 2009.
    [54] A. Dutta, D. Famolari, S. Das, Y. Ohba, V. Fajardo, K. Taniuchi, R. Lopez, and
    H. Schulzrinne. Media-independent pre-authentication supporting secure interdomain handover
    optimization. IEEE Wireless Communications, 15(2):55–64, April 2008.
    [55] Internet Research Task Force. A framework of media-independent pre-authentication (MPA)
    for inter-domain handover optimization, 2011. RFC 6252.
    [56] A. Dutta, S. Das, D. Famolari, Y. Ohba, K. Taniuchi, V. Fajardo, R. M. Lopez, T. Kodama,
    and H. Schulzrinne. Seamless proactive handover across heterogeneous access networks.
    Wireless Personal Communications, 43(3):837–855, November 2007.
    [57] C. Rodrigues, C. Rabadao, and A. Pereira. 802.21-mpa-ims architecture. In International
    Conference on Systems and Networks Communications (ICSNC 2009), pages 94–99,
    September 2009.
    [58] L.-H. Yeh, S.-N. Yang, and W.-K. Chiang. An enhanced media-independent preauthentication
    framework for preventing packet loss. In International Conference on Communication
    Software and Networks (ICCSN 2010), pages 284–288, February 2010.
    [59] M. Melnyk and A. Jukan. On signaling efficiency for call setup in all-ip wireless networks.
    In IEEE International Conference on Communications (ICC 2006), pages 1939–1945, June
    2006.
    [60] A.K. Salkintzis, G. Dimitriadis, D. Skyrianoglou, N. Passas, and N. Pavlidou. Seamless
    continuity of real-time video across umts and wlan networks: challenges and performance
    evaluation. IEEE Wireless Communications, 12(3):8–18, June 2005.
    [61] M. Kassar, B. Kervella, and G. Pujolle. An overview of vertical handover decision strategies
    in heterogeneous wireless networks. Computer Communications, 31(10):2607–2620, June
    2008.
    [62] J.-S. Wu and J.-Y. Tu. Active seamless scalable video coding streaming video service over
    wireless access networks. Advanced Science Letters, 9(1):243–249, April 2012.
    [63] National institute of standards and technology.
    available at http://www.nist.gov/itl/antd/emntg/ssm tools.cfm.
    [64] Internet Engineering Task Force. IP Mobility Support for IPv4, 2002. RFC 3220.

    QR CODE
    :::